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Aim: Ozanimod and fingolimod are sphingosine 1-phosphate receptor-modulating therapies for relaps-
ing multiple sclerosis. Patients & methods: Comparative effectiveness was assessed by matching adjusted
indirect comparisons of safety and efficacy trial outcomes at first-dose cardiac monitoring, 1 year and
2 years. Results: After adjustment, baseline characteristics were similar. Ozanimod was associated with a
lower risk of extended first-dose monitoring, conduction abnormalities including atrioventricular block.
1-year risks of any adverse event (AE), mean lymphocyte count reductions and abnormal liver enzymes
were lower with ozanimod. 2-year risks of AEs leading to discontinuation, any AEs, herpetic infections,
bradycardia and abnormal liver enzymes were lower with ozanimod. Analyses of efficacy outcomes were
similar. Conclusion: Ozanimod appears to have a favorable benefit–risk profile versus fingolimod.
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Multiple sclerosis (MS) is a chronic autoimmune and neurodegenerative disease of the central nervous system. It is
characterized by inflammation, demyelination, neuronal and oligodendrocyte loss, disruption of the blood–brain
barrier, as well as debilitating symptoms such as fatigue, depressive symptoms and cognitive impairment [1,2].
MS may present as a clinically isolated syndrome, relapsing MS (RMS), secondary progressive MS or primary
progressive MS [3,4]. RMS, the most prevalent type of MS, is characterized by episodes of relapses followed by a
remission period. Approximately 85% of individuals with MS present with RMS [5]. Complete physical recovery
from relapse can occur, but approximately 50% of relapses are associated with residual neurological deficits resulting
in a sustained increase in disability [6], typically measured in Phase III MS trials using the Expanded Disability
Status Scale (EDSS) [7,8]. MS often has a highly debilitating impact on quality of life for individuals and their
families [9], and is associated with considerable economic burden [10].

Currently, MS has no cure, but treatment options exist. Anti-inflammatory agents, such as corticosteroids, are used
as symptomatic treatment during acute relapses. Disease-modifying therapies (DMTs), such as immunomodulators,
are used to alter the disease course by reducing relapses, with the goal of preventing or slowing long-term disability [11–

14]. Fingolimod is a nonselective sphingosine 1-phosphate (S1P) receptor modulator that binds to the receptor
subtypes S1PR1, S1PR3, S1PR4 and S1PR5, and was the first oral DMT approved (US, 2010; EU, 2011) for the
treatment of RMS. However, fingolimod may be associated with cardiovascular, ophthalmologic, pulmonary and
hepatic safety concerns, as listed in its drug label [15]. Ozanimod is an investigational oral DMT and a selective S1P
receptor modulator designed to target only the receptor subtypes S1PR1 and S1PR5 [16]; it is currently under review
by regulatory agencies for the treatment of RMS. The clinical efficacy, safety and tolerability of ozanimod for the
treatment of patients with RMS have been demonstrated in the Phase III RADIANCE [17] and SUNBEAM [18]

clinical trials.
The comparative efficacy of these two S1P receptor–modulating agents in the treatment of RMS has not yet

been fully characterized. In the absence of a head-to-head randomized trial between ozanimod and fingolimod, the
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current study was designed to indirectly compare the key safety and efficacy outcomes between these two therapies
for the treatment of patients with RMS using a matching-adjusted indirect comparison (MAIC) [19,20] to adjust for
cross-trial differences in patient data from their pivotal clinical trials. The outcomes assessed in this analysis include
first-dose cardiac monitoring outcomes as well as 1-year and 2-year safety and efficacy outcomes.

MAIC methodology was recently used to compare delayed-release dimethyl fumarate and fingolimod for the
treatment of patients with RMS [21]. Results showed that the efficacy of dimethyl fumarate was similar to that of
fingolimod on clinical measures of relapse and disability progression [21]. In addition, MAIC methodology was
recently used to assess the comparative efficacy of cladribine versus alemtuzumab in adults with RMS [22]. Results
of that study showed that the efficacy of cladribine was comparable to alemtuzumab in the treatment of patients
with RMS based on 6-month confirmed disability progression (CDP) and annualized relapse rates (ARRs) [22].

Patients & methods
Data source
Individual patient data from the RADIANCE-B (NCT02047734 [RPC01-201B]) [23] and SUNBEAM
(NCT02294058 [RPC01-301]) [24,25] ozanimod trials were used in this analysis. RADIANCE-B was a random-
ized, IFN β-1a–controlled, Phase III trial of ozanimod in patients with RMS. Eligible participants were randomly
assigned in a 1:1:1 ratio to ozanimod HCI (daily oral 0.5 or 1 mg) or IFN β-1a for 2 years. The trial enrolled 1313
patients with RMS. SUNBEAM was also a randomized (1:1:1 ratio), controlled study of ozanimod HCI (0.5 and
1 mg) versus IFN β-1a in patients with RMS over a minimum 12-month period. The study enrolled 1346 patients
with RMS. To attenuate potential first-dose cardiac effects with ozanimod HCI, in both trials, a dose-escalation
regimen was applied for all participants, consisting of 0.25 mg on days 1–4, 0.5 mg on days 5–7 and then the
assigned dose of 0.5 or 1 mg from day 8 through week 24.

In addition, the published summary-level data from the TRANSFORMS (NCT00340834 [D2302]) [26],
FREEDOMS (NCT00289978 [D2301]) [27] and FREEDOMS II (NCT00355134 [D2309]) [28] fingolimod Phase
III trials were used, along with pooled safety data from the TRANSFORMS, FREEDOMS and FREEDOMS
II trials [29], as well as the trial data reported in clinicaltrials.gov. TRANSFORMS was a randomized, IFN β-1a–
controlled, Phase III trial of fingolimod in patients with RMS. Eligible participants were randomly assigned in a
1:1:1 ratio to fingolimod (oral 0.5 or 1.25 mg) or IFN β-1a for 1 year. The trial enrolled 1292 patients with RMS.
FREEDOMS I and FREEDOMS II were two randomized, placebo-controlled, Phase III trials of fingolimod in
patients with RMS. Eligible participants were randomly assigned in a 1:1:1 ratio to fingolimod (oral 0.5 or 1.25 mg)
or placebo for 2 years. The trials enrolled 1292 and 1083 patients with RMS, respectively. Only the approved and
recommended dose of fingolimod 0.5 mg was considered for these analyses. No institutional review was required
as this was a post hoc analysis of previously published, de-identified data.

Inclusion criteria
For the ozanimod trials, patients were required to be 18–55 years of age; have a diagnosis of RMS, as defined by the
2010 revised McDonald criteria [30]; have had at least one documented relapse in the previous year before screening
(or prior 2 years with at least one gadolinium-enhancing lesion); and have a score between 0.0 and 5.0 on the
EDSS [31]. In the fingolimod trials, patients were required to be 18–55 years of age; have a diagnosis of RMS, as
defined by the 2005 revised McDonald criteria [30]; have had at least one confirmed relapse during the preceding
1 year (or at least two during the preceding 2 years); and have a score between 0.0 and 5.5 on the EDSS.

Study outcomes
Outcomes assessed at the first-dose cardiac monitoring included heart rate, electrocardiographic findings and change
in blood pressure (BP) from baseline and whether patients received extended monitoring after 6 h, received Day 2
monitoring, or discontinued treatment on Day 1.

Safety and efficacy outcomes assessed at 1 and 2 years included adverse events (AEs), AEs leading to discontinu-
ation, any serious AE, patient death, liver enzymes (ALT) at least three-times the upper limit of normal, macular
edema, absolute lymphocyte count, lymphocyte count <0.2 K/μl, ARR and 3-month and 6-month confirmed
CDP. Because data for the 6-month CDP at 1 year was not reported in the fingolimod trial, a comparison between
ozanimod and fingolimod on this outcome was not feasible.
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Comparisons of first-dose cardiac monitoring outcomes

Both ozanimod HCI doses (0.5 and 1 mg) from RADIANCE-B and SUNBEAM were pooled because the initial
dose of ozanimod on Day 1 in both studies for both dose groups was 0.25 mg, according to identical protocol-
specified dose escalation regimens [17,18]. Each fingolimod treatment group was pooled across the TRANSFORMS,
FREEDOMS and FREEDOMS II studies. Before and after matching, baseline patient characteristics and selected
outcomes were described and compared for the pooled ozanimod doses versus fingolimod (0.5 mg dose).

Comparisons of 1-year outcomes

Both of the ozanimod HCI 1 mg dose groups from RADIANCE-B and SUNBEAM were pooled. The ozanimod
clinical trials and the TRANSFORMS trial all included a randomized comparison to IFN β-1a intramuscular
(Avonex). An anchor-based comparison was conducted for 1-year safety and efficacy outcomes using the IFN β-1a
arm as an anchor. Before and after matching, baseline patient characteristics and selected outcomes were described
and compared for (1) the pooled IFN β-1a arms from the ozanimod trials (RADIANCE-B and SUNBEAM) versus
IFN β-1a arm from the fingolimod trial (TRANSFORMS), to assess the consistency of outcomes before and after
matching; and (2) the pooled ozanimod HCI 1 mg arms (RADIANCE-B and SUNBEAM) versus the fingolimod
0.5 mg arm (TRANSFORMS), with the comparison anchored on IFN β-1a.

Comparisons of 2-year outcomes

The patient group receiving ozanimod HCI 1 mg was obtained from RADIANCE-B. The fingolimod groups
were pooled across the FREEDOMS and FREEDOMS II studies. Before and after matching, baseline patient
characteristics and selected outcomes were described and compared for the ozanimod HCI 1 mg arm (RADIANCE-
B) versus the pooled fingolimod 0.5 mg arms (FREEDOMS and FREEDOMS II). Because of a lack of data at
2 years comparing fingolimod versus IFN β-1a, the comparisons of 2-year outcomes were nonanchored.

Assessment of cross-trial similarities & differences
The trial designs included in this post hoc analysis were determined to be highly similar and suitable for an adjusted
cross-trial comparison. Patients in all trials were 18–55 years of age and discontinued prior treatment (e.g., IFN
β, glatiramer acetate and other DMTs) before randomization. For the first-dose cardiac monitoring assessment,
all patients had hourly assessments of heart rate and BP available, and the duration of assessment was ≥6 h. In
addition, the definitions of and assessment methodologies for relapse were similar across trials.

Several differences between the trials existed. An RMS diagnosis was based on the 2010 revised McDonald
criteria in the ozanimod trials and on the 2005 revised McDonald criteria in the fingolimod trials [30]. The
ozanimod trials required either one documented relapse in the prior year or one in the prior 2 years along with
gadolinium-enhancing lesions, whereas the fingolimod trials required either one confirmed relapse during the prior
year or at least two during the prior 2 years. The upper threshold for the EDSS score for inclusion in the ozanimod
trials was 5.0, whereas the upper threshold was a score of 5.5 in the fingolimod trials. Heart rate and BP were
measured hourly for the first 6 h after the first dose in both trials; however, the ozanimod trials measured patients
in the supine position (as well as the standing position), whereas the fingolimod trials measured patients in the
sitting position. Other differences between the trials included their time periods and geography. The ozanimod
trials were multinational, conducted between 2013 and 2017, and included higher proportions of patients from
Eastern Europe (∼90%) than the fingolimod trials (∼2%), which were also multinational but were conducted
between 2006 and 2011.

Statistical methods
MAIC methodology was used to adjust for baseline patient differences for each treatment comparison and outcome
period [19,20]. Individual patients in the ozanimod trials were assigned weights such that weighted mean baseline
patient characteristics in the ozanimod trials exactly matched those reported for the fingolimod trials. Patients’
weights were equal to their estimated odds of enrollment in an ozanimod trial versus a fingolimod trial, conditional
on enrollment within either of the trial populations.

A logistic regression model using the method of moments [20] was used to estimate the weights for the propensity of
enrollment in the ozanimod trials versus the fingolimod trials. Based on data availability and clinical considerations,
all MAICs adjusted for cross-trial differences in the following baseline characteristics: age (mean), sex (proportion
who were female), duration of MS since first symptom (mean), relapses within previous year (mean), relapses within
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Figure 1. First-dose monitoring outcomes for ozanimod HCI 1 mg versus fingolimod 0.5 mg after baseline adjustment.
*p < 0.05 vs ozanimod.
AVB: Atrioventricular block.

previous 2 years (mean), EDSS score (mean), prior DMTs (percentage) and absence of gadolinium-enhancing lesions
(percentage). For first-dose monitoring outcomes, resting heart rate (mean), cardiac disorders (percentage) and any
conduction abnormality (percentage) were also adjusted for cross-trial differences. In addition, for 1-year outcomes,
lymphocyte count at baseline was adjusted for cross-trial differences.

Baseline patient characteristics (i.e., demographic and clinical characteristics) before and after matching were
compared between the ozanimod and fingolimod groups. Means and standard deviations were reported for contin-
uous variables; frequencies and percentages were reported for categorical variables. Comparisons of binary variables
before matching were conducted via χ2 tests, and Wald tests were used for the comparisons of binary variables after
matching and the comparisons of continuous variables both before and after matching. A p-value of 0.05 was used
to determine statistical significance.

Results
Baseline characteristics before & after matching
Before MAIC adjustment, some of the clinically relevant differences between patients receiving ozanimod (N = 1773)
compared with those receiving fingolimod (N = 1212) included shorter MS duration (6.8 vs 8.5 years, respec-
tively) and lower likelihood of prior DMT use (29.0 vs 56.4%) (Supplementary Table 1). After adjustment,
baseline averages for all included patient characteristics were balanced between the ozanimod and fingolimod
trials. The anchor-based and nonanchor-based comparisons of the 1-year safety outcomes are listed in Table 1 and
Supplementary Table 2, respectively.

Adjusted analyses of first-dose cardiac monitoring outcomes
Compared with ozanimod, the adjusted absolute increases in the percentages of patients whose lowest hourly
recorded heart rate was <45 bpm (45–54 bpm) in the first 6 h were +1.4% (+12.1%) for fingolimod 0.5 mg
(p < 0.001; Table 2), indicating that the adjusted risk difference (RD) was more favorable for ozanimod.

The rates of the studied safety outcomes during first-dose cardiac monitoring were generally lower with ozanimod
than with fingolimod. Compared with fingolimod, ozanimod was associated with significantly lower rates of
conduction abnormalities (RD: -3.5%) and first-degree atrioventricular block (RD: -3.0%), as well as a lower
risk of requiring monitoring beyond 6 h (RD: -8.3%) and of requiring Day 2 monitoring (RD: -2.6%; all
p < 0.001; Figure 1 & Table 2). Ozanimod was associated with significantly less reduction in systolic (difference
in means: 2.2 mm Hg) and diastolic (difference in means: 5.0 mm Hg) BP compared with fingolimod at first dose
(both p < 0.001; Table 2).
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Table 2. Comparison of first-dose cardiac monitoring outcomes for ozanimod HCI 1 mg versus fingolimod
0.5 mg: assessment of risk differences†.
Outcome Adjusted risk difference for ozanimod HCI 1 mg vs fingolimod

0.5 mg

� ‡ 95% CI p-value

Heart rate (bpm)

– �45 -1.4 (-2.0, -0.7) �0.001¶

– 45–54 -12.1 (-14.7, -9.5) �0.001¶

– 55–64 -3.5 (-7.9, 0.9) 0.12

– ≥65 17.2 (13.0, 21.3) �0.001¶

Decrease in heart rate (bpm) from baseline, hour 5§ 6.6 (5.8, 7.5) �0.001¶

Decrease in heart rate (bpm) from baseline, hour 6§ 7.5 (6.7, 8.3) �0.001¶

ECG findings

– Any conduction abnormality -3.5 (-5.3, -1.8) �0.001¶

– Atrioventricular block

– First-degree atrioventricular block -3.0 (-4.4, -1.7) �0.001¶

– Second-degree atrioventricular block (Wenckebach/Mobitz type I, Mobitz type II, 2:1) -0.2 (-0.5, 0.1) 0.12

Received extended monitoring beyond 6 hours -8.3 (-10.6, -6.0) �0.001¶

Received Day 2 monitoring -2.6 (-3.5, -1.7) �0.001¶

Discontinued on Day 1 0.1 (-0.3, 0.4) 0.72

BP, mmHg

– Change in mean sitting systolic BP 2.2 (1.3, 3.1) �0.001¶

– Change in mean sitting diastolic BP 5.0 (4.3, 5.7) �0.001¶

†First-dose cardiac monitoring outcomes for both fingolimod arms were extracted from the pooled analysis reported in DiMarco et al. [29]. Patient characteristics for ozanimod
were extracted from the patient-level data from the RADIANCE-B and SUNBEAM trials; data for the 0.5 mg arm and the 1 mg arm were pooled for this analysis.
‡� represents the change in risk between the two arms.
§Decrease in heart rate from baseline to nadir for both fingolimod arms was compared with decrease in heart rate from baseline to hours 5 and 6 for ozanimod. Hour 5
represents the nadir for ozanimod, whereas hour 6 represents the end of the monitoring period.
¶Denotes a statistically significant difference.
BP: Blood pressure; bpm: Beats per minute; ECG: Electrocardiogram; SD: Standard deviation.

Adjusted analyses of 1-year outcomes
After adjustment for baseline patient characteristics, ozanimod was associated with a significantly lower risk of any
AEs (RD: -9.9%), higher absolute mean lymphocyte count (difference in means: 0.4 × 109/l) and lower risk of
abnormal liver enzyme (ALT) elevations (ALT ≥3x upper limit of normal; RD: -6.8%) compared with fingolimod
(all p < 0.05; Table 3). No significant differences were observed in ARRs between the two groups (ARR ratio:
1.08; p = 0.80), and similar proportions of patients were free of 3-month CDP (difference in proportions: 1.1%;
p = 0.72). A comparison between ozanimod and fingolimod for 6-month CDP at 1 year was not feasible as data
were not reported in the fingolimod trial.

Adjusted analyses of 2-year outcomes
After adjustment for baseline patient characteristics, ozanimod was associated with a significantly lower risk of
any AE (RD: -22.7%), AEs leading to discontinuation (RD: -7.4%), herpetic infection (RD: -4.9%), basal-cell
carcinoma (RD: -1.8%), bradycardia (-0.5%) and abnormal liver enzyme elevations (RD: -3.0%) compared with
fingolimod (all p < 0.05; Table 4). No significant differences were observed in ARRs between groups (ARR ratio:
1.06; p = 0.78). Similar proportions of patients in both groups were free of 3-month (difference in proportions:
5.2%; p = 0.12) and 6-month CDP (difference in proportions: 0.9%; p = 0.76).

Comparisons of risk outcomes based on odds ratios were consistent with the results described for RDs.

Discussion
Evidence on the comparative effectiveness of ozanimod and fingolimod in the treatment of RMS will be important
for decision makers to assess the relative clinical value of these therapies. In the absence of head-to-head randomized
trials of these treatments, indirect comparisons can provide valuable comparative evidence. This analysis used
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Table 3. Comparison of 1-year safety and efficacy outcomes for ozanimod HCI 1 mg versus fingolimod 0.5 mg:
assessment of risk differences.
Outcome Adjusted risk difference for ozanimod HCI 1 mg vs fingolimod 0.5 mg

� † 95% CI p-value

AE leading to discontinuation (%) -1.2 (-5.7, 3.3) 0.61

Death (%) 0.0 (0.0, 0.0) –

Any AE (%) -9.9 (-18.0, -1.8) �0.05¶

– Herpesvirus infection 2.2 (-1.6, 6.0) 0.25

– Depression 3.1 (-0.9, 7.1) 0.13

Any SAE (%) 0.4 (-4.4, 5.3) 0.86

Infection SAE (%)

– Appendicitis 0.6 (-0.1, 1.2) 0.1

– Herpesvirus infection (serious) 0.0 (-0.6, 0.6) 1.0

Neoplasm SAE (%)

– Basal-cell carcinoma -0.5 (-1.4, 0.4) 0.27

– Melanoma (including in situ) -0.7 (-1.5, 0.1) 0.08

– Breast cancer (including in situ) -0.5 (-1.2, 0.2) 0.14

Cardiac SAE (%)

– Bradycardia or sinus bradycardia -0.4 (-1.1, 0.3) 0.23

– Atrioventricular block first degree -0.2 (-0.6, 0.2) 0.35

– Atrioventricular block second degree -0.2 (-0.6, 0.2) 0.35

– Myocardial infarction -0.2 (-0.5, 0.2) 0.32

Mean absolute lymphocyte count (109/l) at 1 year§ 0.4 (0.3, 0.5) �0.001¶

Absolute lymphocyte count �0.2 K/μl (%) -13.8 (-17.3, -10.3) �0.001¶

Liver enzymes: ALT ≥ 3x ULN (%) -6.8 (-10.6, -3.1) �0.001¶

Macular edema (%) -0.3 (-1.0, -0.5) 0.50

Annualized relapse rate‡ 1.08 (0.64, 1.82) 0.78

Proportion free of CDP, 3 months (%) 1.1 (-4.4, 6.5) 0.72

†Difference in the proportion of patients with events, unless otherwise noted.
‡Annualized relapse rate ratios for ozanimod vs fingolimod.
§Difference in means.
¶Denotes a statistically significant difference.
AE: Adverse event; CDP: Confirmed disability progression; SAE: Serious adverse event; ULN: Upper limit of normal.

data from the pivotal clinical trials of ozanimod and fingolimod and adjusted for cross-trial differences in patient
populations to assess the comparative efficacy of these therapies in RMS.

In this adjusted comparison, ozanimod was associated with a significantly lower risk of any AEs than fingolimod
0.5 mg. In addition, lower risks of heart rate reduction, any conduction abnormalities and atrioventricular block
during first-dose monitoring were observed among patients receiving ozanimod, as well as a less frequent need for
extended first-dose monitoring.

Ozanimod was also differentiated from fingolimod in the 1- and 2-year safety outcomes. Specifically, in the 1-year
outcomes, patients receiving ozanimod had a lower risk of any AEs, lymphocyte count reductions and abnormal liver
enzymes elevations than patients receiving fingolimod. In the 2-year outcomes, patients receiving ozanimod had a
lower risk of AEs leading to discontinuation, any AEs, herpetic infections, bradycardia and abnormal liver enzymes
elevation than patients receiving fingolimod. Regarding efficacy outcomes, no statistically significant differences
in ARRs or rates of 3-month and 6-month CDP were found between ozanimod and fingolimod. Of note, the
directions and magnitudes of differences in outcomes were generally consistent both before and after matching,
indicating that the trial findings were robust to the adjustment for multiple patient characteristics.

The current analysis of pivotal trial data sheds light on the comparative safety and efficacy of ozanimod, an
investigational drug and fingolimod in the treatment of RMS. While ozanimod and fingolimod were comparable in
terms of effects on the ARR and CDP, ozanimod was associated with significantly lower risk of the safety outcomes
currently assessed. In relation to this, it is worth noting that the mechanism by which ozanimod exerts therapeutic
effects in MS is unknown but may involve the reduction of lymphocyte migration into the central nervous system.
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Table 4. Comparison of 2-year safety and efficacy outcomes for ozanimod HCI 1 mg vs fingolimod 0.5 mg:
assessment of risk differences.
Outcome Adjusted risk difference for ozanimod HCI 1 mg vs fingolimod 0.5 mg

� † 95% CI p-value

AE leading to discontinuation (%) -7.4 (-12.3, -2.5) �0.01¶

Death (%) 0.0 (0.0, 0.1) 0.34

Any AE (%) -22.7 (-29.2, -16.2) �0.001¶

– Herpetic infection -4.9 (-8.9, -0.9) �0.05¶

– Depression -2.7 (-6.3, 0.9) 0.15

Any SAE (%) -4.7 (-9.8, 0.5) 0.07

Infection SAE (%)

– Appendicitis -0.1 (-0.6, 0.5) 0.83

– Herpesvirus infection (serious) -0.3 (-0.7, 0.1) 0.12

Neoplasm SAE (%)

– Basal-cell carcinoma -1.8 (-2.7, -0.9) �0.001¶

– Melanoma (including in situ) -0.1 (-0.3, 0.1) 0.38

– Breast cancer (including in situ) 0 (-0.3, 0.3) 0.96

Cardiac SAE (%)

– Bradycardia or sinus bradycardia -0.5 (-1.0, 0.0) �0.05¶

– Atrioventricular block first degree 0 (0.0, 0.0) –

– Atrioventricular block second degree 0 (0.0, 0.0) –

– Myocardial infarction 0 (0.0, 0.0) –

Mean absolute lymphocyte count (109/l) at 1 year§ 0.2 (-,-) –

Liver enzymes: ALT ≥ 3x ULN, % -3.0 (-5.8, -0.1) �0.05¶

Macular edema (%) -0.4 (-0.8, 0.0) 0.08

Annualized relapse rate‡ 1.06 (0.70, 1.62) 0.78

Proportion free of CDP, 3 months (%) 5.2 (-1.3, 11.7) 0.12

Proportion free of CDP, 6 months (%) 0.9 (-4.8, 6.7) 0.76

†Difference in the proportion of patients with events, unless otherwise noted.
‡Annualized relapse rate ratios for ozanimod vs fingolimod.
§Difference in means; standard errors were not reported for fingolimod and thus statistical comparison was not possible.
¶Denotes a statistically significant difference.
AE: Adverse event; CDP: Confirmed disability progression; SAE: Serious adverse event; ULN: Upper limit of normal.

This evidence suggests that ozanimod has a favorable benefit–risk profile compared with fingolimod in terms of
first-dose monitoring and safety outcomes for S1P receptor modulation over 1–2 years.

Results of this post hoc analysis should be interpreted in light of several limitations. As this study included
comparisons of nonrandomized treatment groups, results may be biased by differences between patient populations
that could not be adjusted for, such as the differences in the location of study sites; however, adjustment for observed
baseline characteristics minimizes this risk. For the 2-year comparisons, due to lack of a common comparator arm,
there is less opportunity to assess confounding bias in the nonanchored based comparison of ozanimod and
fingolimod. Some differences in measurement standards between trials existed. For example, the ozanimod trials
measured heart rate and BP in the supine position or standing position whereas the fingolimod trials measured
patients in the sitting position. Heart rate is commonly lower when measured in the supine position while BP is
commonly higher when measured in the supine position. Also, there were differences in the initial dosing regimens
between the ozanimod and fingolimod trials; the ozanimod trials used a dose-escalation regimen not present in the
fingolimod trials, which could potentially have led to fewer first-dose cardiac AEs in the ozanimod arms. Rates of
any AEs should be interpreted with caution when comparing across trials because event ascertainment and reporting
may differ, especially for lower-severity events. Given the 2-year follow up data, this analysis could not evaluate the
long-term safety or efficacy of these treatments.
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Conclusion
In this MAIC analysis of pivotal registration clinical trial data, although ozanimod and fingolimod were comparable
in terms of key efficacy outcomes, ozanimod was associated with a more favorable benefit–risk profile compared
with fingolimod when considering outcomes of first-dose cardiac monitoring, potential safety outcomes for S1P
receptor modulation and key efficacy outcomes over 1–2 years.

Summary points

What is already known about this subject?
• Fingolimod is a nonselective sphingosine 1-phosphate (S1P) receptor modulator for the treatment of relapsing

multiple sclerosis (RMS).
• Ozanimod, a selective S1P receptor modulator designed to target only the receptor subtypes S1PR1 and S1PR5, is

currently under investigation for the treatment of RMS.
• The superior efficacy of these two treatments compared with IFN β-1a has been demonstrated in clinical trials.
• No head-to-head trials directly compare the safety and efficacy of ozanimod versus fingolimod for the treatment

of RMS.
What are the new findings?
• In this indirect comparison across separate clinical trials, ozanimod was associated with significantly lower risks of

adverse outcomes during first dose monitoring outcomes and over 1–2 years of follow-up compared with
fingolimod.

• Ozanimod and fingolimod were comparable in terms of reducing annualized relapse rates and the proportion of
patients with confirmed disability progression.

• Overall, ozanimod appears to have a superior benefit–risk profile to fingolimod.
Impact on clinical practice
• Ozanimod is an investigational drug under review for the treatment of RMS.
• This evidence will help decision makers to assess the relative clinical value of these therapies.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at:

www.futuremedicine.com/doi/suppl/10.2217/cer-2019-0169
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Practice points

• Parkinson’s disease (PD) is not a mere ‘movement disorder,’ but rather it is a complex motor behavior disease
responsible for a tremendous social and economic impact.

• The optimal management of PD should involve integrated, multidisciplinary approaches combining both
pharmacotherapy and non-pharmacological interventions, such as rehabilitation.

• Bottom-up and top-down cognitive coping strategies and adaptive techniques are useful for achieving motor
benefits in patients with PD.

• The aerobic exercise may promote neural rearrangements and improve cognition in patients with PD.
• Combining a ‘goal-based’, motor-cognitive practice with aerobic training seems to provide sustained clinical

benefits rather than conventional physical therapy in patients with PD.
• Neuroplastic changes probably drive the clinical rehabilitation-induced benefits in patients with PD.
• Future studies should identify optimal parameters of intensity, frequency and duration of rehabilitation in

patients with PD.

Parkinson’s disease (PD) results in a complex deterioration of motor behavior. Effective pharmacologi-
cal or surgical treatments addressing the whole spectrum of both motor and cognitive symptoms are
lacking. The cumulative functional impairment may have devastating socio-economic consequences on
both patients and caregivers. Comprehensive models of care based on multidisciplinary approaches may
succeed in better addressing the overall complexity of PD. Neurorehabilitation is a highly promising non-
pharmacological intervention for managing PD. The scientific rationale beyond rehabilitation and its prac-
tical applicability remain to be established. In the present perspective, we aim to discuss the current evi-
dence supporting integrated motor-cognitive and aerobic rehabilitation approaches for patients with PD
while suggesting a practical framework to optimize this intervention in the next future.

First draft submitted: 13 October 2019; Accepted for publication: 10 December 2019; Published online:
10 February 2020

Keywords: aerobic exercise • motor-cognitive rehabilitation • neuroplasticity • Parkinson’s disease • quality of life

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. In the near future, the prevalence
of PD is expected to exceed that of any other known neurological disorder, including Alzheimer’s disease. Indeed,
according to recent epidemiologic projections, the number of individuals affected by PD is poised for exponential
growth [1].

The dopaminergic neuronal loss in the substantia nigra pars compacta is universally regarded as the pathological
hallmark of PD [2]. The resulting altered connectivity in cortico–basal ganglia networks is believed to be involved
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in the pathophysiology of the cardinal motor symptoms of the disease, including bradykinesia, rigidity and resting
tremor [3].

The clinical spectrum of PD, however, encompasses several non-motor features, which are known to be significant
determinants of patients’ quality of life (QoL) [4]. These include mood changes, anxiety, apathy, fatigue, sleep
disturbances, chronic pain, gastrointestinal abnormalities and bladder dysfunction – among others.

Although originally described in terms of motor symptoms, it is generally acknowledged that nowadays PD should
no longer be regarded as a mere ‘movement disorder,’ but rather as a complex motor behavior disease. Consolidated
experimental evidence demonstrates how basal ganglia nuclei receive multimodal sensorimotor, cognitive and
emotional information from converging cortical pathways and generate a ‘compressed’ and highly integrated
output message to the frontal cortex, where the selection of a proper motor behavior is finally elaborated [5,6].
Notably, this highly integrated computational process encodes for any internally generated motor behavior: from
the simplest movement of a single joint, to the most complex motor sequence involving the entire body in order
to express emotional contents in a given cognitive setting [7].

This broad physiological complexity should indeed be appreciated by clinical scientists in order to understand
the complex phenomenology of PD. Along the disease course, the neurodegenerative process spreads to other, non-
dopaminergic neural systems, such as the cholinergic and the noradrenergic pathways [8,9]. At this stage, patients
usually develop cognitive, motivational and more complex ‘axial’ disturbances affecting gait, balance and posture,
whose responsiveness to dopamine replacement therapy (DRT) is almost always suboptimal, if not disappointing.
Not uncommonly, these conditions may overlap in the same patient, thus exerting an overall detrimental impact
on QoL as well as social and emotional well-being [10–12].

Indeed, while in early PD DRT is usually effective in improving self-perceived QoL by addressing the dominant
motor features of the disease [13,14], its effectiveness in the medium-advanced stages tends to decrement. Furthermore,
the potential onset of DRT-related side effects, such as motor fluctuations, dyskinesia, painful dystonia, dopamine
dysregulation syndrome and impulsive–compulsive disorders conspire, over time, to reduce the overall tolerability
of pharmacological therapies [15].

Given the multi-layered complexity of PD, it is generally acknowledged that its optimal management should
involve multidisciplinary approaches combining both pharmacotherapy and non-pharmacological interven-
tions [16,17]. Among the latter, growing evidence supports neurorehabilitation as an effective complementary
treatment for the management of PD [18–26]. Neurorehabilitation could be defined as the set of clinical and carer
interventions aimed at recovery from nervous system damage (due to acquired injuries or to degenerative diseases)
by reducing or compensating for the functional disturbances by using the patients’ individual neuroplastic resources.

In the past years, the complex interplay between basal ganglia and cortical–cerebellar networks in the modulation
of both cognitive-motivational (non-motor) and motor aspects of action [5,27–31] has been increasingly considered
in the development of novel integrated rehabilitative approaches (see Figure 1). Furthermore, emerging evidence
from basic science and clinical studies suggested the potential for add-on aerobic exercise to boost brain plasticity
mainly through long-term potentiation (LTP) phenomena [32].

In the current perspective, we aim to discuss the potential for integrated motor-cognitive rehabilitation practices
and aerobic exercise to harness greater and more sustained clinical benefits than any uni-dimensional rehabilitative
approach alone. Potential ways to combine these two methodologies within routine rehabilitation protocols will be
finally discussed.

Motor-cognitive intervention in PD: scientific rationale & clinical evidence
A number of different rehabilitative protocols designed for PD were previously reported in the clinical litera-
ture [20,21]. The vast majority of them focused on improving basic motor aspects of PD [33–36]. Overall, results from
these interventions were mixed and somewhat conflicting. Further, these protocols did not expressly investigate the
influence of cognitive processes in modulating patients’ final motor behavior [5,27–31].

However, mounting evidence suggests that the broad degenerative process underlying PD may manifest with a
complex clinical phenomenology involving not only primary motor aspects of action, but also cognitive, emotional
and motivational drivers [5,26,29,30,37]. This huge neural networks disruption could explain why PD motor signs
and symptoms may be preceded or accompanied by a wide range of neuropsychiatric features (such as anxiety,
apathy, depression, fatigue and psychosis) [38], whose potential impact on functional outcomes has been described
in the rehabilitation field [39,40]. In the last years, the importance of engaging subject’s cognition in order to
achieve greater motor benefits began to be increasingly considered [37]. More specifically, the impairment of basal
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Figure 1. The role of the basal ganglia–cortico–cerebellar networks in motor behavior: implications for
rehabilitation.
Schematically, the striatum can be divided into three principal nuclei with different functions: the nucleus accumbens
plays a crucial role in decision-making and in reward-based learning; the nucleus caudatum is fundamental for motor
learning and for action planning; finally, the putamen has a pivotal role for scheduling and executing
habitual-automatic motor skills. These nuclei are strictly interconnected with limbic, associative and sensorimotor
cortical areas, respectively. From a functional point of view, these corticostriatal structures are central to learn and
express each single motor behavior: the motivation to move for reaching a goal is driven by the accumbens–OFC
network; the network linking the caudatum with PFC, parietal cortex and SMA represents the neural system for action
planning; motor execution is finally provided by the putamen–SMA–PMC–MC network. The cerebellum monitors the
motor performance, contributes to error correction of the ‘ongoing’ action and generates a continuous signal for
maintaining the congruency of the motor behavior. Considering this functional complexity, in a rehabilitative
perspective, the treatment of a neurological disorder leading to the disruption of motor behavior (such as Parkinson’s
disease) has to be designed considering all the motor, motivational and cognitive aspects underlying the dysfunction.
OFC: Orbitofrontal cortex; PFC: Prefrontal cortex; PMC: Premotor cortex; MC: Motor cortex; SMA: Supplementary
motor area.

ganglia–cortical–cerebellar networks in PD has been involved in: i) an aberrant expression of habitual-automatic,
goal-based actions [41–44], ii) the dysregulation of reward-based [45–47] and error-based learning processes [48,49],
and iii) an impaired switching from automatic to voluntary and goal-based actions [50–53]. The aforementioned
mechanisms are believed to underline the pathophysiology of bradykinesia [54], walking problems – including
freezing of gait [55], postural abnormalities and balance disturbances with falls [56–58], writing and manual dexterity
problems [59], speech [60] and swallowing deficits [61] in these patients.

It therefore follows that, from a cognitive and motor learning perspective, rehabilitation in PD should aim
to foster the re-acquisition of lost habitual, goal-based motor behavior [37]. To achieve this result, clinicians may
take advantage of multidisciplinary approaches [26] including physiotherapy, occupational therapy [62], speech and
swallowing therapies [63].

Although both the implicit learning and executive control may be affected in PD [64–68], it has been shown that
PD patients remain capable to apply bottom-up and top-down cognitive coping strategies and benefit from adaptive
techniques. These include explicit cues, such as verbal instructions, and implicit cues, such as environmental sounds
or visual signals [37,69–75].

It is believed that cues allow patients for engaging the volitional-executive control of movements, thus by-
passing dysfunctional sensorimotor-habitual networks, while reinforcing the cortical mechanisms involved in motor
drive [76–78]. While the explicit cues likely exploit executive functions mediated by the caudatum–prefrontal cortex
network, implicit cues are thought to act through entrainment and attention focusing via the cerebellum–prefrontal
cortex network [37,79,80].

An additional rehabilitative strategy involves the use of feedback-based learning. The underlying neural pathway
seems to be found in the striatum–prefrontal cortex network [81]. Feedback-based motor learning involves the
volitional, constant modulation of the ongoing motor behaviors based on internal and/or external signals that are
strictly action-specific [82,83].
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The overall effects of adaptive techniques (external cues, internal cues and feedback-based motor learning) may
translate into clinical improvements on mobility, balance, gait, posture – among others [70–72,75,84].

The fact that PD patients may effectively apply to cognitive strategies in order to cope with their motor disability
suggests that rehabilitative interventions engaging cognition may indeed harness motor learning schemata leading
to broad clinical, motor and functional benefits [32]. As a case in point, many robotic-mechanical devices adopted
in the field of neurological rehabilitation engage cognition to achieve motor benefits. Treadmill training represents
the prototype among the tools used in this motor-cognitive perspective. The main goals of treadmill training are
improving gait and enhancing patients’ physiological reserve. Training parameters such as speed and workload can
be individualized for each subject, while the intensity and challenge of the training can be dynamically adjusted
overtime. While using this device, kinetic signals provided by the sliding belt allow patients for focusing their
attention to the active control of gait. As such, treadmill training may exert a normalizing effect on spatiotemporal
gait parameters, thus improving gait rhythmicity and reducing gait variability in patients with PD, especially when
associated with cues, feedback and music cueing [85–87]. Worthy of interest in this field is the use of virtual reality
(VR), a computerized simulation that allows patients to interact with a virtual environment through multiple
sensorial modalities [88,89], thus stimulating both motor and cognitive processes, simultaneously [90]. VR provides
augmented feedback about performance and may enable individualized repetitive practice of motor function. The
use of VR provides patients with benefits in the short and long-term period [91,92].

Another effective cognitive rehabilitative technique is motor imagery (MI). This is based on a conscious access
with the intention to move. A large body of evidence suggests that imagined and executed actions share the same
neural structures, recruiting overlapping regions [90,93,94]. Consistently, it has been demonstrated that MI may
improve both motor performance and motor learning processes [94]. In the same way, Action Observation Therapy
(AOT) represents a further, interesting and effective cognitive instrument for motor rehabilitation in PD [94]. AOT
is based on the observation and imitation of specific motor actions for facilitating the motor learning processes,
probably through the activation of the so-called ‘mirror neurons’ system [95,96]. A recent study demonstrated that
this technique is effective in treating freezing of gait and that benefits may be sustained over a 4-weeks follow-up
period [96]. The cognitively-mediated effects of this modality of rehabilitation were recently supported by imaging
studies reporting an increased recruitment of frontoparietal areas in patients undergoing AOT [97]. Over the
past years, motor-cognitive training showed a great efficacy in ameliorating a lot of goal-based, automatic motor
behaviors, thus corroborating the valuable role of these strategies for the management of parkinsonian patients [37].

In this scenario, dual task training is a prime example of motor-cognitive interplay and a highly appealing
technique to be implemented in the management of PD [98].

In PD, gait function tends to shift from a healthy, semi-automatic pattern to a maladaptive profile where
attention-based strategies are inappropriately used to maintain locomotion. These compensatory strategies are not
optimized for natural walking and when a second cognitive task is applied, the resulting attention shift may decrease
walking speed and smoothness, ultimately leading to gait disruption and falls [99,100].

While in PD the abrupt administration of dual tasks can exert disruptive effects on walking, compelling evidence
also suggests that motor strategies based on repetitive dual task training and dual task reinforcement may improve
the cognitive reserve of these patients, thus ameliorating their gait function in clinical and ecological settings [101,102].

Based on previous reports from stroke literature [103], Yang and colleagues investigated the effects from cognitive
dual task training on gait function in patients with PD. A decreased double support time was found following a
12 sessions program (30 min each session, three sessions per week for 4 weeks); furthermore, motor dual task gait
training led to decreased gait variability in motor dual task walking conditions [101].

Finally, the application of noninvasive brain stimulation techniques, such as repetitive transcranial magnetic
stimulation (rTMS) and transcranial direct current stimulation (tDCS), may maximize clinical benefits through
mechanisms involving cortical plasticity [104,105]. The underlying molecular basis is not fully known, but it seems
to involve synaptic remodeling through LTP and long-term depression (LTD) phenomena [106].

Manenti et al., [107] investigated the effects of anodal transcranial direct current stimulation (tDCS) over the
dorsolateral prefrontal cortex in combination with physical therapy in PD patients. Patients were either assigned to
anodal tDCS plus physical therapy (2 weeks of treatment consisting of daily direct current stimulation application for
25 min during physical therapy), or to sham neuromodulation plus physical therapy. While significant improvements
in motor skills and depressive symptoms were observed in both groups, performances on PD Cognitive Rating
Scale and verbal fluency tests improved only following add-on neuromodulation. These benefits were sustained
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over time (3 months). A number of studies emphasized the potential of tDCS and rTMS to modulate both motor
and cognitive functions [108–111] and to improve neuroplasticity [104,105].

Interestingly, add-on tDCS in conjunction with dual task gait training may positively influence cognitive
performances while walking under certain experimental conditions [112]. The effect of tDCS and rTMS on
prefrontal cortex [108,113,114] could be related to modulation of functional connectivity on corticostriatal level, thus
somehow replicating what is observed with rehabilitative interventions based on motor-cognitive training. This
provides further evidence for motor benefits that are mediated, at least partially, by neuroplastic phenomena.

Using different behavioral tasks probing reaction time (RTs), Ortelli et al., [115] investigated the relationship
between asymmetric dopaminergic degeneration and attentional resources in PD patients undergoing motor-
cognitive rehabilitation. Attention-mediated performances did not significantly differ between right-side (RPD)
and left-side (LPD) predominantly affected patients. However, only LPD patients showed significant improvements
on attentional tasks following motor-cognitive rehabilitation. The authors hypothesized that these different profiles
of cognitive modifiability in PD patients may be related to a lateralized susceptibility of the nigrostriatal system
to neuronal degeneration and brain plasticity [115]. Importantly, these findings were in agreement with a previous
randomized controlled trial describing the effects of 24 weeks of structured exercise interventions in PD [116]. The
study provided Class IV level evidence for Progressive Resistance Exercise or Modified Fitness Counts in improving
attention and working memory in non-demented PD patients with mild-to-moderate disease severity.

Aerobic exercise in PD: scientific rationale & clinical evidence
Solid experimental evidence suggests that physical exercise may promote brain plasticity through the activation of
neurotrophin signaling pathways [117], synaptogenesis [118], angiogenesis and neurogenesis [119,120]. Furthermore,
beneficial effects from aerobic exercises may be mediated by reduced neuroinflammation [121] oxidative stress [122],
and by improved intracellular calcium homeostasis [123].

In PD models, aerobic exercise may induce compensatory rearrangements of dopamine neurotransmissions by
virtue of neuroplastic changes involving the striatal–thalamic–cortical motor circuits [32,124–127]. In neurotoxin-
based models of PD, such as MPTP and 6-OHDA, physical exercise facilitates dopamine release (DA) through the
modulation of DA receptors [124,128,129]. Using western immunoblotting analysis of synaptoneurosomes and in vivo
positron emission tomography imaging with DA-D2R specific ligand [18F]fallypride, Vučković et al., [130] observed
an increase in striatal DA-D2R expression within dorsal striatum in MPTP mice following treadmill training.
Notably, the increase expression of DA-D2R in the dorsal striatum has been linked to the potential restoration of
automatic motor patterns in PD models [32].

It is hypothesized that exercise-induced effects on brain plasticity may also involve other non-dopaminergic
circuitries. Consolidated evidence from in vitro and animal models shows that following dopamine depletion,
a glutamate overdrive within corticostriatal connections tends to emerge. This phenomenon has been linked to
aberrant learning and memory processes [131]. In neurotoxin-based rodent models of PD, exercise seems able to
reverse this aberrant hyperactive glutamatergic state by reducing the presynaptic release of glutamate. Interestingly,
these changes are accompanied by changes in the firing pattern of nigral dopamine neurons, suggesting a strong
correlation between these two neurochemical systems in PD [123,132].

In addition to changes in neurotransmitters, modulation of neurotrophic factors may play an important role in
the exercise-induced neuroplastic changes. These proteins are pivotal in key neurobiological processes including
neuronal survival, growth and synaptogenesis [133,134]. Specifically, the action of BDNF is a candidate mechanism
underlying exercise-induced benefits. Literature data suggest that BDNF release can help to optimize brain plasticity
outcomes via exercise interventions, which could be properly relevant in the context of multimodal training
(i.e., exercise and cognitive stimulation) [135]. Interestingly, in the context of exercise, the candidate tissues for the
addition of BDNF to circulation is not only the brain, but also skeletal muscle, peripheral blood mononuclear
cells, vascular endothelial cells and platelets via the spleen [135]. In particular, endothelial cells rapidly secrete
BDNF in proportion to the magnitude of exercise-like stimuli, including shear stress [136] and reductions in
PO2 [137]. Consistently with the upregulation of central BDNF expression in rodents, physical activity was found
to increase circulating BDNF levels in both healthy humans and PD patients [138–140]. Fontanesi et al., [140] tested
the hypothesis that a 4-week rehabilitation program, including aerobic exercise and functional and goal-directed
training, could enhance BDNF-TrkB signaling in lymphocytes in patients with PD (Hoehn & Yahr stage 2–
3). Following the intervention, a significant improvement in motor and non-motor symptoms along with an
up-regulation of BDNF-TrkB signaling [140] was observed. Moreover, changes in the Unified Parkinson’s Disease
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Rating Scale significantly correlated with the increase in TrkB signaling, thus suggesting that clinical benefits in
this population may be mediated by enhanced BDNF-TrkB signaling in lymphocyte. Two randomized controlled
trials tested the rehabilitation effects on functional outcomes in PD and whether the treatment increases the
BDNF serum levels [141]. Frazzitta et al., [142] enrolled 30 participants in early stages of PD who were assigned to
intensive rehabilitation or to a control group (no rehabilitation). The intervention lasted 28 days and included
aerobic exercise. The authors found that the intervention increased the BDNF levels and improved PD signs [142].
Sajatovic et al., [143] aimed to compare changes in depression in people with PD with comorbid depression between
individual versus group exercise plus chronic disease self-management. The authors selected some biomarkers
of inflammation and neuronal integrity, including BDNF, as outcome measures possibly related to mechanisms
involved in depression. They found a significant increase in plasma BDNF level that corresponded to the initial
12-week ‘intensive’ portion of the interventions [143].

Similarly to what observed in animal models, Fisher and colleagues [144] reported an increased in DA-D2R binding
potential within the dorsal striatum of individuals with early stage PD following an 8 weeks training program.
Interestingly, these findings specifically correlated with improved postural control, suggesting that benefits from
exercise may also be task-specific. Other studies seem to indicate dose-dependent effects from physical activity.
However, the specific role played by motor tasks and dose in influencing the final clinical outcomes remains a matter
of investigation. Finally, mounting evidence from different neurophysiologic studies suggest that high-intensity
exercise may normalize corticomotor excitability in early PD [145]. These findings are consistent with the well-
known relationship between exercise intensity and BDNF levels, with higher exercise intensities inducing larger
BDNF increases [146]: noteworthy, low to moderate intensity exercise is less effective than high-intensity exercise at
increasing BDNF concentrations in healthy adults [147,148].

Overall, these findings in humans seem to recapitulate prior evidence from both in vitro and animal mod-
els, suggesting that neuroplastic re-arrangements following intensive exercise may be mediated though different,
potentially interconnected molecular mechanisms [124,129].

For the scopes of the present perspective, it is noteworthy that exercise paradigms incorporating aerobic training
in PD may improve cognition and motor learning in addition to their known effects on motor function [32,149].

Indeed, the dopaminergic neuronal loss in the basal ganglia may directly affect cognitive functions with specific
respect to executive domains [150,151]. Different studies with functional magnetic resonance imaging suggest that
aerobic exercise may increase connectivity between brain regions specifically involved in affect, reward, learning,
memory, attention and executive control [152]. In this setting, Duchesne et al., [153] described a functional re-
organization of brain activity in cerebral regions concerned with motor learning (hippocampus, striatum and
cerebellum) in 19 early stage PD patients following a 12-week progressive aerobic training. These functional
changes were accompanied by improvements on behavioral outcomes observed in PD patients. Together with
additional data showing improved executive functions following aerobic exercise [154], current evidence suggests
that cognitive benefits following physical activity could be mediated by enhanced activation in frontal brain regions.

Silveira et al., [155] compared the effects of aerobic and goal-based exercise on five cognitive domains (attention
and working memory, executive functions, memory, language and visuospatial function) in cognitively normal and
impaired individuals with PD who were randomly allocated into three intervention groups: aerobic, goal-based and
control. The authors found that aerobic exercise was more effective than goal-based exercise in improving executive
functions (i.e., inhibitory control) in both cognitively normal and impaired individuals with PD.

These findings are extremely relevant in light of the role played by frontal brain regions in modulating attentive
processes putatively used to compensate for impaired motor automaticity in PD [37].

Integrating motor-cognitive rehabilitation with aerobic exercise: open questions
Mounting evidence from clinical, behavioral, brain imaging, animal models and in vitro studies, supports the
combined use of intensive, ‘goal-based’, motor-cognitive practices with aerobic training to achieve greater and more
sustained clinical benefits in patients with PD (Figure 2) [32,37,134]. In the attempt to optimize complementary
models of care for PD, we believe that future rehabilitative approaches should integrate both motor-cognitive and
aerobic interventions. While cognitive engagement seems critical to achieve motor-behavioral benefits, aerobic
training may act synergistically by maximizing brain plasticity. Indeed, this perspective of care encompasses all
the main strategies historically adopted in PD rehabilitation: cueing techniques [156], use of feedback [157], verbal
instructions [158] external focus [75], MI [159,160], biofeedback [161], AOT [96,160], mechanical devices [85,86], VR [92,92],
non-invasive brain stimulation techniques [104,105], front-to-front physical therapy [25], aquatic therapy [162,163],

46 Neurodegener. Dis. Manag. (2020) 10(1) future science group



Motor-cognitive & aerobic training for PD Perspective

Goal-based
Crucial to promote the

motor-behavioral learning
in a given context.

Motor-cognitive
Crucial to improve the
execution of actions

exploiting the networks
spared by the disease

process.

Intensive
Crucial to drive motor and
cognitive benefits through

neuroplastic changes.

Aerobic
Required to maximize

the neuroplasticity.

Rehabilitation
treatment in
Parkinson’s

disease

Figure 2. The theories on which rehabilitation in Parkinson disease should be based.
Combining an intensive and ‘goal-based’, motor-cognitive practice with aerobic training promotes neuroplasticity at the corticostriatal
level, stimulates the executive resources and promotes the learning processes, thus probably representing the best way to obtain
sustained improvements in Parkinson’s disease (see both of the paragraphs about motor-cognitive intervention and aerobic exercise in
Parkinson’s disease).

speech and swallowing therapies [61] and occupational therapy [62]. Cognitive engagement may play an equally
important role in other complementary activities designed for patients with PD, including dance therapy [164,165],
art therapy and music therapy [166].

Future personalized protocols aiming to integrate these modalities of rehabilitation should also identify optimal
parameters of intensity, frequency, duration and task-specific exercises to improve effectiveness and tolerability. This
element introduces the question regarding the actual level of standardization and reproducibility of complementary
interventions in PD. Although the current methodological heterogeneity of published studies prevents from pooling
the available evidence to generate conclusive recommendations, growing evidence seems to confirm and converge
on the use of multidisciplinary models of care [25,26,167–171] involving different health professionals including
neurologists, physiatrists, physical therapists, occupational therapists, speech therapists, psychologists, nurses, social
workers – among others. This approach may succeed in shifting the pendulum from the current construct of ‘one
disease – one disability’ to more comprehensive and integrated strategies focusing on patient’s individual complexity;
and functional, familiar and social needs as a whole. Hopefully, different clinical, demographical and medical aspects
(including comorbidities) should be weighted to adapt the intervention to the needing and personal motor and
cognitive resources of each patient. For example, ‘moving’ the intervention toward the goal-based cognitive side,
rather than to the aerobic side, could be useful for frail, advanced-stages patients. Conversely, the aerobic exercise,
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promoting plasticity, can be advantageously adopted in cognitively impaired patients for whom the cognitive,
goal-based approach is hampered. Moreover, when the cognitive, goal-based approach is exploitable, it is crucial
to evaluate which are the problems the patient presents in performing actions in a multi-dimension perspective
(including the motor, motivational and cognitive aspects): how much the patient is motivated to perform the
specific action (i.e., walking, or talking or writing)? Is it possible to increase his/her motivation? Does the patient
know the correct strategies to manage the difficulties in action performing? Is it possible to modify his/her adopted
strategies for ameliorating the motor performance? Which motor aspects are impaired? Finally, the time to spend in
the different activities (occupational therapy, speech therapy, balance training, gait training, psychological therapy
etc.) should be framed on the basis of what any single patient really needs. Therefore, algorithms to stratify
the interventions and make them even more person-centered could be designed in the upcoming future. As a
matter of fact, the multidisciplinary approach has been preliminarily reported to be effective in improving clinical
conditions and QoL in PD [25,26,167–171], although further appropriately designed, well-powered studies are needed
to corroborate these findings.

Results from these studies raise the question regarding the cost–benefit ratio and the practical applicability of these
integrated interventions. Given the current demographic trend, the prevalence of PD is expected to exponentially
increase in the next years, thus reaching a pandemic dimension [1]. The enormous social and economic impact
for patients and their caregivers [172,173] is aggravated by the aggregate burden of pharmacological therapies in
terms of direct costs, adverse reactions and side effects [174,175]. Therefore, the cost saving effect of multifaceted
comprehensive non-pharmacological approaches preserving long-term functionality and improving QoL may be
outstanding, especially if compared with the aggregate cost deriving from addressing every patient’s comorbidity
separately. This favorable aspect is also partially suggested by prior studies reporting a reduced or controlled amount
of dopaminergic medications administered to PD patients receiving dedicated rehabilitation programs [25,26]. These
considerations should be included in economic models evaluating the cost–effectiveness of rehabilitation.

Further questions related to the optimal outcomes chosen to measure the aggregate effect of comprehensive
and integrated neurorehabilitative approaches should also be addressed. Intuitively, the simple use of clinical
tools biased toward appendicular motor function may not capture clinically significant improvements occurring
in multiple, interdependent functional domains. Broader, comprehensive measures should be incorporated into
both clinical practice and clinical trials, including kinematic, cognitive, psychological, emotional, behavioral and
social outcomes. Moreover, only few studies evaluated cost–consequences analysis of rehabilitation in PD and many
limitations stand [176]. Converging literature indicates that dedicated rehabilitative interventions are associated with
fewer complications and lower costs in real world settings [177].

Finally, the optimal setting in which motor-cognitive rehabilitation and aerobic interventions may be admin-
istered remains to be defined. While an inpatient setting may be optimal to ensure treatments requiring higher
intensity of care, home-based activities (possibly tele-monitored by electronic devices or smartphone applica-
tions) as well as outpatient programs, should be implemented to favor the maintenance of benefits over time.
The coordination of different health professionals within dedicated networks and constant interactions with pa-
tients’ communities through outreach programs may successfully serve to this purpose and should therefore be
encouraged [178].

Conclusion & future perspective
A large amount of data suggest that effective rehabilitative interventions for PD should incorporate motor-
cognitive training with aerobic activities and be designed accordingly. The specification of the chosen rehabilitative
parameters, such as intensity, specificity and complexity, should always be formally disclosed in order to promote
standardization and comparability of different protocols across dedicated centers. Future studies should address
these methodological considerations in order to generate high quality experimental evidence (e.g., by comparing
different protocols embracing the motor-cognitive interplay in randomized controlled trials) and lead to the
identification of optimal models of care in PD. The development of comprehensive, patient-centered modalities of
rehabilitation may succeed in harnessing long-lived clinical benefits and improvements in QoL in patients affected
by this destructive disease.
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Kovács10, Pavnit Kukreja5, Koray Onuk5, Francesco E Pontieri11, Weining Robieson5,
Mustafa S Siddiqui12, Mihaela Simu13, David G Standaert14 & K Ray Chaudhuri15
1Selkirk Neurology & Inland Northwest Research, Spokane, 610 S Sherman St #201 & 208, Spokane, WA 99202, USA
2Department of Neurology, Edith Wolfson Medical Center Affiliated to Tel Aviv University, 62 Ha-Lokhamim St, Holon, Israel
3Department of Neuroscience, Padua University, 5 - 35128 Padova, Padua, Veneto, Italy
4Department of Neurology, University of Medicine & Pharmacy “Carol Davila”, Bulevardul Eroii Sanitari 8, Bucharest, Romania
5AbbVie, Inc., 1 Waukegan Rd, North Chicago, IL 60064, USA
6Department of Neurology AZ Groeninge, President Kennedylaan 4, Kortrijk, Belgium
7Neurology Department, Hospital Universitario Burgos, Av. Islas Baleares, 3, Burgos, Spain
8Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232, USA
9Kingston Centre, Monash Health, 400 Warrigal Rd, Melbourne, Victoria, Australia
10Department of Neurology, University of Pecs, 48-as tér 1, Pecs, Hungary
11Department of Neurological Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, Rome, Italy
12Department of Neurology, Wake Forest School of Medicine, 475 Vine St, Winston Salem, NC 27101, USA
13Department of Neurology, Victor Babes University of Medicine & Pharmacy, Piaţa Eftimie Murgu 2, Timisoara, Romania
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Practice points

• Application of simple criteria to identify advanced Parkinson’s disease (PD) is important because early
identification of advanced PD allows doctors to adjust treatment, leading to better symptom control and
improved quality of life.

• A group of experts proposed that fulfilling at least one of the ‘5-2-1 criteria’ (taking levodopa by mouth at least
five times a day, having at least 2 h of the day with ‘Off’ symptoms, or having at least 1 h of troublesome,
uncontrolled, muscle movements (also known as dyskinesia) suggests advanced PD.

• Patients meeting at least one of the 5-2-1 criteria may also be candidates for advanced therapies, such as
continuous infusion of levodopa–carbidopa intestinal gel, continuous administration of subcutaneous
apomorphine, or deep brain stimulation.

• The multicountry long-term DUOGLOBE study assessed long-term effectiveness and safety of continuous
administration of levodopa–carbidopa intestinal gel.

• At enrollment, almost all patients with physician-identified advanced PD in the DUOGLOBE study met at least one
of the 5-2-1 criteria, and the majority (68%) met two or more of the 5-2-1 criteria.

• Patients showed improvement in motor and nonmotor symptoms following treatment with levodopa–carbidopa
intestinal gel.

• As part of the physician’s assessment, using the 5-2-1 criteria may be an objective way to identify patients with
advanced PD using simple and reproducible measures.

Aim: A Delphi expert consensus panel proposed that fulfilling ≥1 of the ‘5-2-1 criteria’ (≥five-times daily
oral levodopa use, ≥two daily hours with ‘Off’ symptoms or ≥one daily hour with troublesome dyskinesia)
suggests advanced Parkinson’s disease (PD). Patients & methods: DUOdopa/Duopa in Patients with Ad-
vanced PD – a GLobal OBservational Study Evaluating Long-Term Effectiveness (DUOGLOBE) – is a single-
arm, postmarketing, observational, long-term effectiveness study of levodopa–carbidopa intestinal gel
(LCIG) for advanced PD. Results: This 6-month interim analysis (n = 139) affirms that most (98%) enrolled
patients fulfill ≥1 of the 5-2-1 criteria. These patients responded favorably to LCIG treatment. Safety was
consistent with other LCIG studies. Conclusion: In advanced PD patients, the 5-2-1 criteria generally aligns
with clinician assessment.

Clinical Trial Registration: NCT02611713 (ClinicalTrials.gov)
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Levodopa, a dopamine precursor, is a key medication in the standard of care for Parkinson’s disease (PD). Although
oral treatment with levodopa is highly effective, there are shortcomings that become apparent over time [1]. Dose-
related motor and nonmotor fluctuations often follow the dosing cycle, with patients demonstrating ‘Off ’ related
deterioration in motor function and emergence of nonmotor symptoms as the medication wears off [2,3]. As PD
progresses, patients typically require more frequent levodopa dosing as the therapeutic window narrows. Dose
fractioning of five or more times daily and troublesome ‘Off ’ periods more than 1–2 h/day are critical indicators
that referral to a specialist may be warranted [4].

Patients with advanced PD are required to have individual, customized therapy to manage symptoms, including
nonmotor symptoms, dyskinesia and ‘Off ’ time [5]. When modified oral regimens no longer adequately manage
PD symptoms, therapies such as continuous infusion formulations of levodopa, subcutaneous apomorphine infu-
sion and deep brain stimulation are available alternatives for consideration [4]. Levodopa–carbidopa intestinal gel
(LCIG) is continuously delivered via percutaneous endoscopic gastrostomy with a jejunal extension tube and a
portable pump. Results from several Phase III, observational and comparative studies have demonstrated significant
improvements in motor function, nonmotor symptoms and quality of life in patients with advanced PD who are
treated with LCIG [6–15]. Continuous subcutaneous infusion of apomorphine was shown in multiple open-label
studies to reduce ‘Off ’ time, extend ‘On’ time and improve disability and nonmotor symptoms [16–18]. Results
from a double-blind, placebo-controlled study with apomorphine demonstrated significant reduction in ‘Off ’ time
and time without troublesome dyskinesia (TSD) [19]. Effective surgical procedures for advanced PD also exist,
such as deep brain stimulation of the subthalamic nucleus and globus pallidus internus, which has been shown to
consistently improve motor fluctuations and dyskinesia [16,20–24]. Deep brain stimulation has also been evaluated in
patients with less advanced disease and has been shown to provide benefits comparable to a control group receiving
the best medical treatment via drug therapy [14,16,25,26].

Efforts to establish simple criteria for the early identification of suspected advanced PD and identification of
patients who would benefit from infusion or surgical therapies have been ongoing for some years. The absence of
a biomarker, diagnostic test, or gold standard index makes defining the stage of advanced PD challenging, which
impacts the ability to optimize therapies [4]. A Delphi expert consensus panel proposed several features across motor,
nonmotor and functional-impact domains that might be useful to identify advanced PD. The chosen objective
motor criteria (5-2-1 criteria) included using oral levodopa at least five times per day, having at least 2 h of the
day with ‘Off ’ symptoms, or at least 1 h of the day with TSD [4]. The 5-2-1 criteria may be useful to aid in the
identification of suspected advanced PD patients who are uncontrolled with oral/transdermal therapies and may
benefit from advanced treatments.

DUOGLOBE (DUOdopa/Duopa in Patients with Advanced Parkinson’s Disease – a GLobal OBservational
Study Evaluating Long-Term Effectiveness) is a 3-year, follow-up, observational, multicountry study. This post
hoc analysis of an interim DUOGLOBE dataset was conducted to evaluate if patients identified by experienced
clinicians as having advanced PD met the 5-2-1 criteria. DUOGLOBE also assessed the relationship of the 5-2-1
criteria to effectiveness and safety outcomes of LCIG treatment during routine care. The population was analyzed
across four subgroups, divided as patients meeting the five or more times a day oral levodopa dosing criterion, two
or more hours of ‘Off ’ time criterion, one or more hours a day TSD criterion and those patients who met all three
of the 5-2-1 criteria.

Patients & methods
Study design & treatment
DUOGLOBE is a global, multicountry, single-arm, postmarketing observational analysis of the long-term effec-
tiveness of LCIG in patients with advanced PD (NCT02611713; Supplementary Figure 1).

Patients
Patients were included in the DUOGLOBE study if they were LCIG-naive at the start of the study and eligible to
receive LCIG therapy in accord with the approved local LCIG product label for the region where they were enrolled
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in the study (Label outside of the USA: LCIG is indicated for the treatment of advanced levodopa-responsive
Parkinson’s disease with severe motor fluctuations and hyper-/dyskinesia when available combinations of Parkinson
medicinal products have not given satisfactory results. Label in the USA: LCIG is indicated for the treatment
of motor fluctuations in patients with advanced Parkinson’s disease). In addition, the physician needed to make
the decision to treat the patient with LCIG before the patient was approached to participate in the study and
the patient had to provide written informed consent. Patients were excluded from consideration if they had any
condition included in the contraindications section of the approved local LCIG label, had current treatment with
continuous apomorphine infusion, had a score <24 on the Mini-Mental State Examination, had participated in a
concurrent interventional clinical trial or exhibited a lack of motivation or insufficient language skills to complete
study questionnaires. Patients with history of previous surgery for PD (such as deep-brain stimulation or cell
transplantation) were also excluded. However, in 2017 an amendment (only applicable to patients enrolled in the
USA) allowed for inclusion of patients who had previous surgery for PD.

Assessments
Determination of patients’ fulfillment of 5-2-1 criteria included frequency of daily levodopa intake, measurement
of daily ‘Off ’ time as reported by the patient and time spent with TSD as reported by the patient. TSD was defined
as dyskinesia severity (Unified Parkinson’s Disease Rating Scale [UPDRS] part IV item 33) with a score of 2, 3 or
4 (mild, moderate or severe) as defined in Supplementary Table 1.

Effectiveness assessments
Effectiveness in this interim analysis was evaluated from baseline to 6 months follow-up using ‘Off ’ time as reported
by the patient and by responses on the Unified Dyskinesia Rating Scale (UDysRS), the Non Motor Symptom Scale
(NMSS), the Parkinson’s Disease Questionnaire (PDQ-8), the UPDRS part II (activities of daily living) and the
Modified Caregiver Strain Index (MCSI).

Safety assessments
Safety outcomes were assessed based on serious adverse events (AEs), pregnancies and product complaints that were
monitored and reported by the physician.

Statistical analysis
This was a post hoc analysis of the first interim dataset of the DUOGLOBE study. Patients were stratified into
subgroups who met all, one or more and each individual 5-2-1 criteria at baseline. Baseline demographics and disease
characteristics were analyzed using descriptive statistics. For effectiveness outcomes, statistical comparisons within
each group were assessed using a one-sample t-test with a p-value < 0.05 being the cut off level for significance.
As this was a post hoc analysis of nonrandomized groups that could have underlying differences in observed or
unobserved baseline characteristics, statistical comparisons between groups were not performed.

Results
Patients
Patients were enrolled in Australia, Belgium, Hungary, Israel, Italy, Romania, Slovenia, Spain, the UK and the
USA. Of the 139 enrolled patients in this interim dataset, 82 had all 5-2-1 criteria status captured at baseline, had
6 month follow-up data and were included in the interim analysis. Most patients (98%) fulfilled at least one of the
5-2-1 criteria. Over 90% of patients (n = 74) reported having two or more hours of ‘Off ’ time daily at baseline
(Figure 1A). More than half (57%) of patients were taking oral levodopa five-times a day or more (n = 47) and
38% reported experiencing at least 1 h of TSD daily (n = 31). The majority (68%) of patients fulfilled two or
more of the 5-2-1 criteria and 20% fulfilled all three (Figure 1B). Patients who met none of the 5-2-1 criteria
(n = 2) or reported less than 2 h a day of ‘Off ’ time (n = 8) had insufficient sample sizes for separate analysis of the
effectiveness outcomes. These patients were included in the effectiveness and safety outcomes analysis for LCIG
treatment.

Patients using more than five versus less than five daily doses of oral levodopa
When stratified by baseline frequency of oral levodopa dosing, patient characteristics across groups were similar,
with both groups comprised mostly of males around age 70 years with approximately 11 years since being diagnosed
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Figure 1. DUOdopa/Duopa in Patients with Advanced Parkinson’s Disease – a Global Observational Study
Evaluating Long-Term Effectiveness study population who met each individual, any (one or more) and all of the 5-2-1
criteria for advanced Parkinson’s disease. (A) Distribution of study population at baseline. (B) Each graph represents
the analysis population (n = 82) and if those patients met (black) or did not meet (white) the 5-2-1 criteria for
advanced PD in each subgroup.
PD: Parkinson’s disease; UPDRS: Unified Parkinson’s Disease Rating Scale.

with PD (Supplementary Table 2). After 6 months of LCIG therapy, both groups exhibited significant reductions
from baseline in ‘Off ’ time (p < 0.001 for both), UDysRS (p < 0.01 for five or more times a day of oral levodopa
and p < 0.001 for five or more times a day of oral levodopa) and NMSS scores (p < 0.001 for both). PDQ-8
summary index scores were significantly reduced in the five or more times a day oral levodopa group (p < 0.001;
Figure 2). No significant improvements were seen in UPDRS part II scores or mean MCSI scores.

Patients experiencing ≥2 h a day versus <2 h a day ‘Off’ time
Patients who had two or more hours a day of ‘Off ’ time at baseline were on average 68.7 years of age with PD of
11-years’ duration. Average ‘Off ’ time was 6.3 h. No analysis was performed in the group of patients who had <2 h
a day of ‘Off ’ time because of the small group size (Supplementary Table 3). Patients with at least 2 h of ‘Off ’ time
a day represent nearly the full study population, so effectiveness data in this group provides the closet estimation
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Figure 2. Effectiveness outcomes in patients stratified by baseline oral levodopa dosing frequency.
***Statistically significant at p < 0.001; **Statistically significant at p < 0.01.
MCSI: Modified Caregiver Strain Index; NMSS: Non Motor Symptoms Scale; PDQ-8: Parkinson’s Disease Questionnaire-8; SD: Standard
deviation; UDysRS: Unified Dyskinesia Rating Scale.

of the overall interim results. After 6 months of LCIG therapy, patients with two or more hours a day baseline
‘Off ’ time exhibited significant reductions in ‘Off ’ time (p < 0.001), UDysRS (p < 0.001), NMSS (p < 0.001),
PDQ-8 summary index (p < 0.01) and MCSI scores (p < 0.05) (Figure 3). The changes from baseline in UPDRS
part II score were not significant after 6 months for the group experiencing at least 2 h of ‘Off ’ time daily.

Patients experiencing one or more hours a day versus less than 1 h a day TSD
When stratified by baseline TSD, patient characteristics across groups were similar, including UPDRS part II and
PDQ-8 summary index scores, but with notable differences including more dyskinesia time and a higher UDysRS
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Figure 3. Effectiveness outcomes in patients with baseline ‘Off’ time ≥2 h/day. Patients who reported <2 h/day of ‘Off’ time (n = 8) had
insufficient sample sizes for analysis of the effectiveness outcomes. ***Statistically significant at p < 0.001; **Statistically significant at
p < 0.01; *Statistically significant at p < 0.05.
MCSI: Modified Caregiver Strain Index; NMSS: Non Motor Symptoms Scale; PDQ-8: Parkinson’s Disease Questionnaire-8; SD: Standard
deviation; UDysRS: Unified Dyskinesia Rating Scale.

score in patients with one or more hours a day TSD, although no statistical comparison was made (Supplementary
Table 4). After 6 months of LCIG therapy, both groups exhibited significant reductions in ‘Off ’ time and NMSS
scores (p < 0.001). Patients experiencing at least 1 h of TSD a day also had significantly reduced UDysRS scores
at 6 months (p < 0.001), as did patients experiencing less than 1 h of TSD (p < 0.01). PDQ 8 summary index
scores were significantly reduced in the one or more hours a day TSD group (p < 0.01) (Figure 4). MCSI scores
were significantly reduced (p < 0.05) in patients who experienced TSD <1 h a day. No significant differences were
found in UPDRS part II scores after 6 months for either group.
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Patients fulfilling all of the 5-2-1 criteria versus those not meeting all criteria
When stratified by baseline fulfillment of the 5-2-1 criteria, patient characteristics across groups were similar
(Table 1). Patients who fulfilled all the 5-2-1 criteria appeared to have the highest baseline burden in terms of
‘Off ’ time, UPDRS part II, UDysRS, NMSS, PDQ-8 summary index and MCSI scores. After 6 months of LCIG
therapy, both groups exhibited significant reductions in most effectiveness measurements (p < 0.001 for the ‘Off ’
time subgroup not fulfilling all criteria and both UDysRS subgroups; p < 0.01 for the ‘Off ’ time and NMSS
subgroups fulfilling all criteria; p < 0.001 for NMSS in the group not fulfilling all criteria; and p < 0.05 for
PDQ-8 and MCSI for the subgroup not fulfilling all criteria; Figure 5). MCSI scores were significantly reduced for
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Table 1. Baseline characteristics stratified by baseline fulfillment of 5-2-1 criteria.
Parameter Mean (SD)†

Met all 5-2-1 criteria (n = 16) Did not meet all (n = 66)

Sex, n (%)
Female
Male
Age in years

4 (25)
12 (75)
67.6 (7.83)

21 (32)
45 (68)
69.9 (8.61)

Time since diagnosis in years 12.2 (5.50) 11.1 (4.69)

Hoehn and Yahr stage‡ 3.0 (1.0, 5.0) 3.0 (1.0, 5.0)

‘Off’ time in hours 6.6 (2.10) 5.5 (3.33)

Dyskinesia time in hours 4.6 (2.34) 4.1 (3.90)

UDysRS score 50.8 (13.31) 31.8 (20.57)

NMSS total score 108.1 (51.00) 92.3 (57.76)

PDQ-8 summary index 49.8 (16.60) 42.0 (17.04)

UPDRS part II score 14.0 (7.22) 13.5 (8.02)

MCSI score 12.4 (5.62) 11.3 (6.69)

†Data are presented as mean (SD), unless otherwise noted.
‡Median (range).
LCIG: Levodopa–carbidopa intestinal gel; MCSI: Modified Caregiver Strain Index; NMSS: Non Motor Symptom Scale; PD: Parkinson’s disease; PDQ-8: Parkinson’s Disease Questionnaire-8;
SD: Standard deviation; UDysRS: Unified Dyskinesia Rating Scale; UPDRS: Unified Parkinson’s Disease Rating Scale.

Table 2. Safety.
Daily oral levodopa frequency ‘Off’ time Troublesome dyskinesia 5-2-1 criteria

≥Five-times/day
(n = 47)

<Five-times/day
(n = 35)

≥2 h/day (n = 74) ≥1 h/day (n = 31) <1 h/day (n = 51) All (n = 16) Not all (n = 66)

Any serious AE 19 (40) 10 (29) 25 (34) 8 (26) 21 (41) 4 (25) 25 (38)

Any serious AE
possibly related to
LCIG

6 (13) 4 (11) 8 (11) 3 (10) 7 (14) 2 (13) 8 (12)

Deaths 2 (4) 2 (6) 4 (5) 3 (10) 1 (2) 1 (6) 3 (5)

Most common AEs (occurring in ≥two patients/group)

Decubitus ulcer 2 (4) – 2 (3) 1 (3) 1 (2) 1 (6) 1 (2)

Device occlusion 1 (2) 1 (3) 1 (1) – 2 (4) – 2 (3)

Femoral neck
fracture

2 (4) – 2 (3) 2 (7) – 2 (13) –

General physical
health
deterioration

2 (4) – 2 (3) 1 (3) 1 (2) 1 (6) 1 (2)

Pneumonia 1 (2) 1 (3) 2 (3) 2 (7) – 1 (6) 1 (2)

Pneumoperi-
toneum

2 (4) – 2 (3) – 2 (4) – 2 (3)

Urinary tract
infection

1 (2) 1 (3) 2 (3) – 2 (4) – 2 (3)

Discontinuations 8 (17) 3 (9) 11 (15) 3 (10) 8 (16) 1 (6) 10 (15)

Discontinuations
due to AEs

4 (9) 3 (9) 7 (10) 2 (7) 5 (10) 0 7 (11)

AE: Adverse event; LCIG: Levodopa–carbidopa intestinal gel.

the group of patients who did not meet all criteria (p = 0.018). There was no significant difference for either group
in UPDRS part II scores.

Safety assessments
The safety dataset of this first interim analysis included 139 patients, but 82 patients had full baseline data on the
5-2-1 criteria. Serious AEs related to LCIG occurred at a similar rate in each group (Table 2). The most common
AEs occurring in two or more patients in each group were decubitus ulcer, device occlusion, femoral neck fracture,
general physical health deterioration, pneumonia, pneumoperitoneum and urinary tract infection. Polyneuropathy
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Figure 5. Effectiveness outcomes in patients stratified by fulfillment of all 5-2-1 criteria.
***Statistically significant at p < 0.001; **Statistically significant at p < 0.01; *Statistically significant at p < 0.05.
MCSI: Modified Caregiver Strain Index; NMSS: Non Motor Symptoms Scale; PD: Parkinson’s disease; PDQ-8: Parkinson’s Disease
Questionnaire-8; SD: Standard deviation; UDysRS: Unified Dyskinesia Rating Scale.

occurred in one patient (between months 7 and 12). There was one report of ‘sensory loss’ between months 1 and
6, which may be a description of a neuropathic event. Deaths occurred in at least one patient in each subgroup
(2–10%). One patient death (intestinal obstruction) in the interim dataset was deemed to be possibility related to
LCIG. Across all subgroups, 6–17% of patients discontinued the study. The main reasons for discontinuation were
AEs (0–9.5%), withdrawn consent (0–9%) and other reasons (5–7%).
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Discussion
As PD progresses, management of motor and nonmotor symptoms becomes more difficult, particularly as admin-
istration of oral medication may provide less consistent symptom control [2,3,16,27,28]. Device-aided therapies, such
as continuous subcutaneous apomorphine infusion, continuous LCIG infusion and deep brain stimulation, are
used to treat advanced PD in selected patients [4]. However, there are knowledge gaps regarding what therapies are
most appropriate and when they should be initiated [4,29]. Earlier identification of these patients is expected to lead
to improved patient care by earlier initiation of advanced therapies [16]. Criteria to establish the identification of
treatable motor symptoms of advanced PD may enable earlier and more uniform recognition of patients who might
benefit from advanced therapies, but further validation is needed. Even among specialists in movement disorders,
debate exists whether early treatment is based on time for duration of disease versus emergence of clinical first signs
of motor fluctuations [30]. The 5-2-1 criteria may help address the clinical gap in timely identification of patients
whose symptoms may be uncontrolled with oral medications [4,31]. This criteria is also found in the first section
of a recently launched comprehensive screening tool (MANAGE-PD) that has been tested in the USA to screen
patients whose PD is no longer controlled with oral medications (www.managepd.com) [14].

This study represents the first attempt at using the criteria with a large cohort of patients on an international
scale. Interim results demonstrate that almost all patients selected for LCIG by DUOGLOBE investigators on
clinical grounds fulfilled at least one of the 5-2-1 criteria. Most commonly, patients had two or more hours of ‘Off ’
time at baseline. Patients treated with LCIG had improvements in ‘Off ’ time, dyskinesia, nonmotor symptoms
and quality of life after 6 months. Although the 5-2-1 criteria only identify patients with motor fluctuations, the
improvements seen both in some dopaminergic nonmotor symptoms and in quality of life likely occur through the
effects of continuously administered levodopa. Patients in this analysis experienced a LCIG safety profile consistent
with the safety profile identified in the Phase III trials. Patients who fulfilled all of the 5-2-1 criteria also had the
most ‘Off ’ time and highest baseline burden according to baseline scores of UPDRS part II, UDysRS, NMSS,
PDQ-8 summary index and MCSI. Results from this study confirm that the 5-2-1 criteria correlate with the
established predictors of disease burden and indicate these three relatively simple screening criteria may be useful
in clinical practice as part of holistic disease progression assessment and prediction of overall disease burden.

This study is limited by the observational, uncontrolled, open-label design and the fact that these criteria are
being applied to patients on LCIG therapy only. The impact of the 5-2-1 criteria on nonmotor symptoms is limited
by the fact that two of the three criteria are focused on motor symptoms only. The feasibility of using the 5-2-1
criteria for the selection of patients for other device-aided therapies (e.g., apomorphine subcutaneous infusion and
deep brain stimulation) and their impact on effectiveness outcomes needs further evaluation. Section 1 of the
emerging MANAGE-PD instrument applies the 5-2-1 screening criteria to determine whether patients are well
controlled with oral medications. If patients demonstrate deficiency in any one of the questions in section 1, they
are then moved to section 2, where patient eligibility for device-aided therapy is assessed [32]. The MANAGE-PD
tool is available online and based on robust quantitative and qualitative data from a panel of leading PD specialists
and warrants further validation studies [16,33]. Timely management of symptoms in patients with PD using a
standardized and validated tool may aid in homogenizing care for patients between PD specialists and general
neurologists, including the timing and need for referrals or medication change and reducing the time a patient
remains inadequately controlled on oral medications [32].

There are limitations regarding sample size as a few groups in this study were too small to analyze; however,
information can still be gleaned from those patients in the larger counterpart subgroup. This study is also limited
by including only patients initially screened by expert clinicians as candidates appropriate for treatment with LCIG.
Measurement of ‘Off ’ time may have been limited by use of a modified UPDRS III item 39 rather than Hauser
diaries and the UPDRS measurement used may cause some ambiguities as it was not the current UPDRS licensed
by the Movement Disorder Society. Although application of the 5-2-1 criteria agreed with clinical judgment of
advanced PD in patients in this study, results may not be generalizable to all patient populations. The criteria
are focused on motor features and did not include nonmotor symptoms, although nonmotor symptoms may be
very relevant in choosing therapeutic strategies in treating patients with advanced PD. Exclusion of patients with
cognitive impairment limits the application of the study results to that subgroup of patients that may be considered
for LCIG therapy.

Clinical scales typically used to assess patients with PD are limited in that they may not capture all patients who
have PD that is considered ‘advanced’. The UPDRS is a comprehensive assessment of PD; however, a physician
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with a higher level of expertise (i.e., a movement disorder specialist) may be more adept at using it and use of
MDS-UPDRS can be time consuming and expensive [34]. UPDRS scores may also vary over time in patients who
have motor fluctuations. Other scales are strictly focused on assessing only specific aspects, such as the Parkinson
Fatigue Scale, NMSS and the UDysRS [34–36]. Although, the severe disability denoted by Hoehn and Yahr stage IV
and V [37] usually qualifies a patient as having advanced disease. Elucidating the full clinical picture of advancing
PD requires a holistic approach.

Conclusion
Results from this interim analysis confirm that the 5-2-1 criteria apply to a population of patients identified by
clinicians as having advanced PD in a large, observational, multicountry study. As part of the clinician’s assessment
and emerging use of the MANAGE-PD tool, applying the 5-2-1 criteria may be a practical and straightforward
way to identify patients with advanced PD. While fewer than 20% of patients in this study met all of the 5-2-1
criteria, all but two (98%) met at least one criterion, suggesting that meeting any one of the criteria may identify
advancing PD. Patients meeting any of the 5-2-1 criteria may also be candidates for advanced therapies, such as
continuous infusion with device-aided LCIG, subcutaneous apomorphine or deep-brain stimulation, which could
offer better control of motor symptom fluctuations. Patients treated with LCIG in this study had improvements in
‘Off ’ time, dyskinesia, nonmotor symptoms and quality of life. Prompt identification of patients with advancing
disease is expected to lead to improved patient care by helping recognize those patients who may benefit from
referral to specialists in movement disorders and possible initiation of advanced therapies when motor fluctuations
become bothersome.
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Multiple sclerosis (MS) is a chronic, autoimmune-mediated, demyelinating and neurodegenerative disease of the
CNS that is the number one cause of nontraumatic disability in young persons. Disease-modifying therapies (DMTs)
dramatically improve outcomes by reducing disease activity and progression in MS. However, the emerging DMT
landscape remains complex, and as new therapies with variable efficacy and safety profiles become available, these
complexities will become even more multifaceted, yielding greater challenges in DMT decision-making in clinical
practice [1]. While randomized clinical trials (RCTs) provide the highest level of evidence for DMT safety and
efficacy, they are costly, time-prohibitive, and have more limited applications in the clinical setting due to restrictive
inclusion criteria. In contrast, observational (nonrandom) studies harnessing real-world data are cost-effective and
time efficient, and allow direct comparisons of DMTs in larger, more heterogeneous patient populations to answer
clinically relevant questions with broad applicability [2].

Harnessing insights from real-world observational data
Real-world comparative effectiveness studies evaluating the safety and efficacy of DMTs is a rapidly advancing area
of MS clinical research. Harnessing insights from real-world data has gained growing interest in recent years and will
continue to expand as the number of novel MS therapies rapidly increase. Well-designed comparative effectiveness
studies in MS contribute robust real-world evidence to facilitate decision-making in clinical practice [2] and can also
provide useful insights into the effectiveness of DMTs on sub-populations of interest that are not well-represented
in RCTs (e.g., older patients, minority populations and those with certain comorbidities).

Observational studies, however, are susceptible to many types of biases, and therefore prone to scrutiny by
regulatory agencies and the medical community. While RCTs eliminate biases through the random nature of
treatment assignment to prespecified cohorts, observational studies are confounded by multiple biases that challenge
their reliability and reproducibility. Such biases include: attrition, arising from between-group differences in follow-
up duration, selection bias, arising from sub-populations being preferentially included in a study, immortal time
bias, arising from systematic differences in the definitions of study entry, Will Rogers phenomenon, wherein
diagnostic criteria are changed during the study period and indication bias, arising from subjects’ exposure to
nonrandom treatment [2].

In retrospective observational studies, indication bias can occur when a patient’s characteristics that determine
treatment selection are also associated with the treatment outcome. Providers choose treatments based on clinical
judgment or ‘insider information’. For example, a patient who is considered higher risk may receive a more aggressive
DMT than a patient who is considered lower risk and started on a less aggressive therapy. However, the higher
risk patient may have inherently poorer outcomes compared with the lower risk patient, thus appearing that the
aggressive treatment does not work as well as the less aggressive treatment. In this context, individuals who receive
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one DMT might be different from those treated with another DMT, a matter of ‘apples’ versus ‘oranges’. This
is in contrast to RCTs where treatment is randomly assigned without considering individual patient factors. In
this observational context, treatment groups differ systematically and are therefore noncomparable. Therefore, one
must account for such systematic differences in baseline characteristics between groups of interest when estimating
the effect of treatment on desired outcomes.

Propensity score analysis for mitigating limitations of observational studies
Historically, researchers have relied on the use of regression adjustment to account for differences in measured
baseline characteristics between treatment groups. However, there has been increasing interest in methods based on
the propensity score (PS) [3] to reduce or eliminate the effects of confounding and certain biases (e.g., indication bias)
when using observational data. The PS is the probability of treatment assignment based on a prespecified selection
of baseline covariates that affect treatment selection, in other words, the various ‘insider information’ that providers
use as a basis of their clinical judgment. PS methodology addresses indication bias by balancing the distribution of
covariates across treatment groups before direct comparisons are made. A robust PS model includes a complete list
of covariates that are relevant to treatment selection/allocation and are typically prognostic of treatment outcomes.
For example, when building a PS model for an MS study evaluating treatment A versus treatment B, important
variables to incorporate into the model include demographics (e.g., age, sex and race), baseline disease characteristics
(e.g., prior relapses and gadolinium-enhancing lesions, disease course, disease duration, prior number and type of
DMTs) and comorbidities (e.g., vascular comorbidities, such as hypertension, hyperlipidemia, diabetes mellitus,
tobacco exposure, chronic heart and lung disease). Because the PS is a function of covariates rather than outcomes,
the estimated effect is therefore not biased by the desired outcome. PS methods are therefore a useful tool in MS
comparative effectiveness studies to enable robust comparisons between treatment groups, approaching that of a
randomized study design. In this context, comparisons of treatment groups begin to look more like ‘apples’ versus
‘apples’.

There are various approaches to PS analyses, including matching, weighting and stratification [3,4]. The most
common implementation of PS matching is one-to-one or pair matching, in which pairs of treated and untreated
subjects are formed, such that matched subjects have similar values of the PS. Thus, in a set of subjects with the same
PS, the distribution of observed baseline covariates between treated and untreated groups is the same. This method
allows for comparisons between individuals with a similar probability (PS) of receiving the same treatment but in fact
received different treatments, thereby mimicking randomization. However, one notable limitation of PS matching
is that if the groups of interest have different sample sizes, patients may be unmatched and therefore excluded
from the analysis, potentially introducing selection bias. A second approach of PS analysis, inverse probability
of treatment weighting, uses weights based on the PS to create a synthetic sample in which the distribution of
measured baseline covariates is independent of treatment assignment. A third approach, stratification on the PS
involves stratifying subjects into mutually exclusive subsets based on their estimated PS. Within each PS stratum,
treated and untreated subjects will have approximately similar values of the PS. Therefore, when the PS has been
correctly specified, the distribution of measured baseline covariates will be roughly similar between treated and
untreated subjects within the same stratum [3,4].

However, PS methodologies can only adjust for known sources of bias. In the context of ‘hidden bias’, certain
methods can be used to estimate the minimum effect size of an unmeasured covariate to determine if the ap-
parent treatment effect differences were actually attributable to other confounders. For example, the Rosenbaum
bounds/Hodges-Lehmann � quantifies the robustness of the outcome measurement based on hypothetical unmea-
sured covariates. This sensitivity analysis identifies the proportion of hidden bias that would nullify a statistically
significant finding, though it does not identify the specific unmeasured variables [5].

Comparative effectiveness studies for evaluating DMTs in MS
Several recent, noteworthy comparative effectiveness studies, many of which applied PS methodologies, contributed
to the MS literature by reporting on real-world treatment effect differences between DMTs. Comparative effective-
ness studies to date have primarily focused on commonly used oral DMTs, specifically dimethyl fumarate (DMF),
fingolimod (FTY) and teriflunomide. However, there are some publications reporting on head-to-head compar-
isons of oral versus infusion DMTs (e.g., FTY versus natalizumab [NTZ]) and multiple pairwise comparisons of
injectable, oral and infusion therapies. DMT sequencing studies after discontinuation of DMF, FTY and NTZ
have also been reported. As large datasets become increasingly available through multicenter studies and those
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using large, heterogeneous population-based databases that will comprise the newer infusion therapies, the MS
literature will inevitably expand to include more comparative effectiveness studies investigating infusion versus
infusion DMTs (e.g., NTZ vs ocrelizumab/rituximab).

DMF, FTY & teriflunomide
A two-center, 36-month, PS weighting-adjusted analysis by Vollmer et al., showed similar effectiveness of DMF (n
= 737) and FTY (n = 535), measured via proportion with clinical relapses (odds ratio [OR] = 1.27; 95% CI: 0.90–
1.79), gadolinium-enhancing lesions (OR = 1.25; 95% CI: 0.85–1.84) and new T2 lesions (OR = 0.99; 95% CI:
0.74–1.32) with higher DMF discontinuations (OR = 1.81; 95% CI: 1.41–2.31), largely driven by intolerance (OR
= 1.63; 95% CI: 1.18–1.73) [6]. To comment on DMT sequencing, patients who switched from DMF or FTY to
highly effective therapy (HET; alemtuzumab, ocrelizumab, rituximab) showed decreased disease activity compared
with those who switched to injectable/oral therapies (glatiramer acetate, IFNβ, DMF, FTY and teriflunomide).
Vollmer et al. also investigated MS sub-populations of interest through stratification (e.g., relapsing-remitting MS
[RRMS], patients younger and older than 40 years of age, male and female patients, first-line and non-first-line
users, those with and without baseline gadolinium-enhancing lesions, and direct switchers from NTZ) in a 24-
month DMF versus FTY study [7]. Overall, results showed comparable probability of absence of MS disease activity
(measured via absence of clinical relapses and new MRI lesions) across all sub-groups, except for males (OR = 0.58;
p = 0.035) and first-line users (OR = 0.67; p = 0.023) who experienced less risk with FTY treatment.

A 24-month comparative effectiveness study of DMF versus FTY by Fox et al. showed similar results [8].
The authors compared patient data across multiple studies with a matching-adjusted indirect method. Cross-trial
differences were minimized by adjusting data from trials where individual patient data were known to match
aggregate data from trials in which patient data were unknown. The matching-adjusted indirect comparison
approach showed comparable efficacy of DMF and FTY measured via annualized relapse rate (ARR) (RR = 1.11;
95% CI: 0.88–1.40), though DMF was associated with better patient-reported outcomes. There were no significant
differences in the percentages of patients with no evidence of disease activity (NEDA; RR = 0.92; 95% CI: 0.51–
1.64). Of note, confounding from unknown differences between trials and variations in trial length might have
obscured treatment effect differences between the two groups.

A comparative effectiveness study by Boster et al. utilized a health claims database to assess the real-world
effectiveness of patients (n = 6372) newly-initiating DMF, IFNβ, GA, teriflunomide and FTY [9]. Using a Poisson
and negative binomial regression model, the adjusted incidence rate ratio (IRR) of relapses was comparable between
DMF and FTY (IRR = 1.03; 95% CI: 0.88–1.21), though significantly improved in DMF compared with IFNβ

(IRR = 1.27; 95% CI: 1.10–1.46), glatiramer acetate (IRR = 1.34; 95% CI: 1.17–1.53) and teriflunomide (IRR =
1.23; 95% CI: 1.05–1.45) [10].

Ontaneda et al. used PS matching to compare the ARR of patients with MS (n = 20,311) who switched
from injectable therapy to either DMF, FTY or teriflunomide using a commercial health claims database [11].
Similar to previously reported DMF versus FTY studies, results of the current investigation showed a significant
decrease in ARR for patients treated with DMF as compared with teriflunomide (rate ratio [RR] = 0.667; 95% CI:
0.486–0.914) and comparable postindex ARR compared with FTY (RR = 1.07; 95% CI: 0.861–1.328).

Laplaud et al. compared the effectiveness of teriflunomide (n = 713) and DMF (n = 1057) using inverse
probability weighting [12]. At 24-month follow-up, teriflunomide and DMF demonstrated comparable clinical
effectiveness measured via relapses and disability progression, but better MRI-based outcomes measured via new
T2 lesions (OR = 0.60; p < 0.001) [13]. Overall, this study provided Class III evidence that for patients with
RRMS, teriflunomide and DMF demonstrated similar clinical effectiveness over 24 months of therapy. Another
PS-adjusted analysis by Buron et al. compared DMF (n = 767) versus teriflunomide (n = 1469) in a real-world
clinical setting [14]. The relapse RR for DMF versus teriflunomide favored DMF (RR = 0.58; 95% CI: 0.46–0.73;
p < 0.001). Further, patients treated with DMF had a higher relapse-free survival proportion compared with
those treated with teriflunomide at 48 months (p < 0.05). As opposed to Lauplad et al., this study provided
Class II evidence that for patients with RRMS, DMF was more effective in preventing relapses compared with
teriflunomide.

FTY versus natalizumab
A comparative effectiveness study by Lorscheider et al. applied PS matching to evaluate FTY (n = 179) versus NTZ
(n = 179) as second-line therapy for RRMS patients who were nonresponders to first-line injectable DMTs [10].
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Results showed that patients treated with NTZ had a lower risk of relapses compared with those treated with FTY
(IRR = 0.5; 95% CI: 0.3–0.8). Further, NTZ patients had higher probability of Expanded Disability Status Scale
(EDSS) improvement versus FTY patients (hazard ratio [HR] = 1.8; 95% CI: 1.1–2.7). The authors concluded
that NTZ was more effective in reducing relapse rates and disability progression as measured by the EDSS versus
FTY.

A study by Baroncini et al. evaluated relapse data, EDSS scores and MRI data among RRMS patients treated with
NTZ (n = 102) or FTY (n = 102) as second-line treatment using PS matching [15]. More patients discontinued NTZ
compared with FTY, mostly due to safety concerns (33 vs 11%; p < 0.001). Patients treated with NTZ had a higher
percentage of relapse-free status versus FTY (66 vs 80%; p = 0.015), higher percentage of EDSS improvement (6 vs
15%; p = 0.033), lower percentage of MRI activity (38 vs 14%; p = 0.001) and higher percentage of NEDA (44 vs
70%; p < 0.001). Similar to the Lorscheider et al. study, the investigators concluded that NTZ was superior to
FTY across clinical and radiographic measures in RRMS patients nonresponding to first-line injectable therapies.

Multiple pairwise comparisons investigating injectable, oral, & infusion DMTs using a large
heterogeneous MS population
Using a large multicenter, multinational database, Kalincik et al. used PS matching to compare a number of DMTs.
In 2017, the authors investigated alemtuzumab (n = 189) versus IFNβ (n = 2155), FTY (n = 828) and NTZ (n
= 1160) [16]. Patients treated with alemtuzumab showed lower ARR compared with IFNβ (0.19; 95% CI: 0.14–
0.23 versus 0.53; 95% CI: 0.46–0.61) and FTY (0.15; 95% CI: 0.10–0.20 versus 0.34; 95% CI: 0.26–0.41) and
comparable ARR compared with NTZ (0.20; 95% CI: 0.14–0.26 versus 0.19; 95% CI: 0.15–0.23). Alemtuzumab
patients demonstrated similar probabilities of disability accumulation versus IFNβ (HR = 0.66; 95% CI: 0.36–
1.22), FTY (HR =1.27; 95% CI: 0.60–2.70) and NTZ (HR = 0.81; 95% CI: 0.47–1.39). However, in terms of
disability improvement, while alemtuzumab patients demonstrated similar probabilities compared with IFNβ and
FTY, they had a lower probability versus NTZ (HR = 0.35; 95% CI: 0.20–0.59). Overall, patients treated with
alemtuzumab demonstrated superior relapse rate reductions compared with IFNβ and FTY, while similar to that
of NTZ. Results also demonstrated that NTZ appeared superior to alemtuzumab in allowing disability recovery.

In 2018, Kalincik et al. used PS matching to compare the effectiveness of cladribine (n = 37) versus IFNβ

(n = 1940), FTY (n = 1892) and NTZ (n = 1410) [17]. Overall, patients treated with cladribine demonstrated a
lower probability of relapses compared with IFNβ (p = 0.05), similar probability compared with FTY (p = 0.31)
and higher probability compared with NTZ (p = 0.042). Further, patients treated with cladribine showed similar
probability of disability accumulation compared with IFNβ (p = 0.37) and FTY (p = 0.089), but demonstrated
higher risk of disability compared with NTZ patients (p = 0.021). However, cladribine patients had a higher
probability of disability improvement compared with IFNβ (p < 0.001), FTY (p = 0.0025) and NTZ (p < 0.001).

In 2019, Kalincik et al. compared teriflunomide (n = 614), DMF (n = 782) and FTY (n = 2332) over 2.5 years
using PS matching [13]. Patients treated with FTY demonstrated lower ARR compared with both teriflunomide
(0.18 versus 0.24; p = 0.05) and DMF (0.20 versus 0.26; p = 0.01); while ARR were similar between DMF and
teriflunomide (0.19 versus 0.22; p = 0.55). There were no differences in disability accumulation nor improvement
across all three DMTs.

DMT sequencing following natalizumab discontinuation
Recently, Hersh et al. published a two-center study using PS weighting that compared the effectiveness of switching
from NTZ to a moderate-efficacy DMT (DMF n = 130; FTY n = 140) versus high-efficacy DMT (ocrelizumab n
= 106; rituximab n = 17, alemtuzumab n = 7) [18]. By 24 months post-NTZ, there were no significant differences
in ARR across the two switched treatment paradigms (OR = 1.44; 95% CI: 0.69–1.59). However, patients who
switched to moderate-efficacy DMT had more gadolinium-enhancing lesions (OR = 3.62; 95% CI: 1.56–5.21),
lower proportion with absence of disease activity (OR = 0.41; 95% CI: 0.21–0.71) and higher risk of disability
progression (p = 0.043). Similar results were observed across reasons for NTZ discontinuation (e.g., safety risks,
breakthrough disease on NTZ), though they seemed to be driven more by those who switched from NTZ due to
disease activity. The authors concluded that patients switching from NTZ to moderate-efficacy versus high-efficacy
DMT were at higher risk of clinical and radiographic disease activity and progression by 24 months of follow-up.

Overall, these comparative effectiveness studies contributed to the MS literature by demonstrating DMT per-
formance in real-world settings across a number of different databases (e.g., single- and two-center studies, health
claims databases, large population-based databases). While they all differed in sample sizes, patient populations
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and outcome measures; they reported on similar conclusions that DMF and FTY have similar effectiveness and
out-perform injectable therapies; and alemtuzumab and NTZ are highly efficacious therapies that demonstrate
superiority over injectable and oral therapies in real-world practice. While FTY appears to be superior over ter-
iflunomide, conflicting results were reported on the comparative effectiveness of DMF versus teriflunomide, for
which more large, heterogeneous studies are warranted to further investigate this relationship. Such differences in
reporting underscore the importance of designing robust observational studies that maximize data quality; incorpo-
rate a diverse patient population; are all-inclusive of relevant baseline demographic, clinical and paraclinical factors
for statistical model building; and incorporate sensitivity analyses.

Conclusion
Clinical trial data, while valuable from a regulatory standpoint for the approval of new medications, have limited
applications in clinical settings. Observational studies, on the other hand, can leverage large, heterogeneous data to
derive real-world evidence for MS patients and providers. These studies use data from clinical practice that do not
have the rigid constraints of clinical trials. As such, the results are more generalizable for the neurologist in the clinic
and provide patients more realistic insights into how DMTs perform in a real-world setting. In the rapidly advancing
landscape of novel neurotherapeutics for MS, it has become increasingly challenging, yet crucial, to compare the
effectiveness and safety of DMTs. RCTs are cost- and time-prohibitive, making such trials impractical for providing
these head-to-head comparisons. Comparative effectiveness studies using retrospective observational data are thus
valuable for reporting on these treatment effect differences to inform decision-making in routine practice. Despite
the pragmatic utility of observational studies, they are often prone to confounding by indication, and thus require
methods to limit baseline imbalances in demographics and disease characteristics before direct comparisons are
made. PS analysis is a unique statistical method that reduces the impact of indication bias, thereby approximating
a randomized study design. With the utility of PS methodologies, real-world comparative effectiveness studies in
MS can answer a wide array of clinically relevant questions with broad applicability, contributing to real-world
evidence that not only support but complement RCTs.
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Aim: A large body of evidence has implicated the cytotoxicity of α-synuclein in Parkinson’s disease (PD).
We planned to use a bioinformatics-based approach to gain further insight into this process. Materials
& methods: Using STRING version 10, we identified interacting proteins of α-synuclein. Using α-synuclein
and one of these interactors involved in apoptosis as query proteins, we identified other linked proteins.
We further analyzed the interactions between some of these proteins by Protein–Protein Docking using
ClusPro. Results: We identified BAX as an interacting protein of α-synuclein. Interactions of α-synuclein
and BAX as well as BAX and BCL2L1 were determined. Conclusion: The interaction of α-synuclein and BAX
could play a crucial role in the cell death process of PD where apoptosis and mitochondrial permeability
transition-driven necrosis may coexist.
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Neurodegenerative diseases, such as Parkinson’s disease (PD), Alzheimer’s disease, amyotrophic lateral sclerosis etc.,
are characterized by the abnormal accumulation of different proteins, which are held responsible for an array of
toxic actions leading to neuronal death [1,2]. In PD, abnormal accumulation of α-synuclein (coded by the SNCA
gene) has been considered as a driving force of the disease pathogenesis, based on extensive findings from both
animal and human studies [3,4]. α-synuclein is a small acidic protein with a natively unfolded structure having
N-terminal lipid-binding segment with a tendency to form α-helix on membrane binding, a central hydrophobic
segment called non-amyloid β component domain and a C-terminal acidic tail [4]. In the brain, it is located mainly
at presynaptic terminals and is possibly involved in vesicular transport, neurotransmitter release and synaptic
plasticity [4]. There has been some experimental evidence of localization of the protein in the neuronal nucleus
and the mitochondria-associated endoplasmic reticulum membrane [5]. The role of accumulated monomeric
or oligomeric forms of α-synuclein (wild or mutant type) in causing mitochondrial dysfunction, endoplasmic
reticulum stress, altered ER-Golgi transport, impaired vesicular transport, altered cytoskeletal dynamics, calcium
dysregulation and oxidative stress have been suggested in multiple studies, but the molecular mechanisms of α-
synuclein action remains uncertain [3,6–11]. One suggested mechanism is the interaction of α-synuclein with lipid
biomembranes and disruption of membrane structure and integrity by oligomeric α-synuclein [12]. On the other
hand, α-synuclein could interact with important proteins regulating cell structure, metabolism, differentiation
and death [7,10,13–15]. The unequivocal identification of such interacting protein partners of α-synuclein through
isolation and characterization of protein complexes in different experimental models or in the actual disease
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condition has remained a formidable challenge and thus, a unique pathway of cell death mediated by α-synuclein
in PD is yet to be established. Added to this complexity is the uncertainty of the nature of neuronal death in
PD. Although apoptosis has been advocated as the mechanism of cell death in PD, there is substantial evidence
of involvement of other pathways of regulated cell death, including necrosis [16,17]. There has been interest in
identifying the mechanism and nature of α-synuclein-mediated cell death in model systems that could be relevant
to PD pathogenesis [3,7,18,19]. One particularly interesting aspect in this context is the probable role played by
α-synuclein and mitochondria in cell death pathways like apoptosis, ferroptosis or regulated necrosis. In addition to
the conventional experimental approach, we thought it interesting to use the vast bioinformatic resources available
to predict a sequence of interactions involving α-synuclein that may result in cell death, and then more effectively
plan experimental designs to optimize resources and time.

The availability of high-throughput data collection techniques has resulted in the development of many databases
and tools with varying degrees of complexity in which protein interactions are annotated at various levels of
details. These can be utilized to understand protein–protein interaction (PPI) within the cells in normal and
abnormal conditions [20,21]. Many complex cellular mechanisms, including programmed cell death pathways, take
place through multiple and sequential interactions among different proteins. Such interactions generally lead to
conformational changes in the interacting proteins causing activation of enzymatic activity (e.g., protein kinase) or
translocation of the proteins to new compartments (e.g., from cytosol to mitochondria or nucleus) [22,23]. Such PPI
networks may be generated with α-synuclein as the query protein in STRING database to identify various interacting
partners of α-synuclein with links to cell death pathways. The STRING database, which is available online, has been
designed in a user friendly and comprehensive manner covering nearly 5090 organisms and 24.6 million proteins. It
provides us interactions, exact and predicted, based on experimental data as well as bioinformatics-based studies like
gene fusion, gene co-occurrence, co-expression and text mining [24]. This database also provides us with information
about predicted secondary and tertiary structures of large numbers of interacting proteins and the nature of their
interactions through colored nodes and edges. For our present purpose, the most relevant PPI networks would
be those that focus on experimentally proven interactions of α-synuclein with proteins of programmed cell death
pathways. However, such PPI networks would at best be predictive. We, therefore, thought it prudent to perform
protein–protein docking, which could demonstrate the actual probabilities of physical interactions of proteins of
interest. Protein docking is the prediction of the 3D structure of a protein–protein complex from the coordinates
of its component structures. Of the various available approaches, rigid body docking of two proteins is commonly
performed in the first stage among large number of possible conformations and in subsequent stages a small subset
of structures are refined and re-ranked using other energy functions [25,26]. Various algorithms have been optimized
for this purpose [27]. Using both these approaches in the current study, we have attempted to gain new insight on
interactions of α-synuclein with other proteins that may culminate in neuronal death.

Materials & methods
Creation of PPI network using STRING version 10
The STRING version 10 database was used online to produce PPI network using α-synuclein as the query protein
and selecting Homo sapiens as the species. The PPI network obtained in STRING, shown as nodes connected by
edges, was successively modified and refined by changing the parameter setting such as the number of interactor
proteins, active interaction sources and minimum required interaction score. The PPI network from STRING was
based on various actual and predicted interactions among α-synuclein and its interacting partners. These included
actual experimental physical interaction as well as predicted interactions based on gene fusion, gene co-expression,
gene co-occurrence, text-mining, etc. After getting the initial PPI networks of α-synuclein, we finally selected a
network based on actual physical interactions with five of the most significant interacting proteins in the first shell.
The database provided us the important details of the interacting proteins and we selected one protein linked with a
programmed cell death pathway. We used the STRING database again utilizing two query proteins (i.e., α-synuclein
and the newly identified interacting partner of α-synuclein) to obtain a final PPI network consisting of these two
query proteins and their five significant interacting partners in the first shell.

Protein–protein docking
In order to verify further the physical interactions among these proteins, we performed protein–protein docking
using the software ClusPro. ClusPro is a widely used software for direct docking of two proteins [28]. ClusPro first
performs rigid body docking by sampling billions of conformations and then clusters 1000 lowest-energy structures
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Figure 1. Expanded protein–protein interaction network of α-synuclein obtained from STRING version 10. Nodes
represent proteins and edges represent PPI. The meanings of node color and node content and color and thickness of
edges are detailed in the database (https://string-db.org). Parameter setting: 20 interacting proteins (ten in the first
shell, ten in the second shell); interaction score 0.40 (medium confidence); all active interaction sources as mentioned
in the database.
PPI: Protein–protein interaction.

based on root-mean-square deviation. It also refines the selected structures by minimizing the CHARMM energy.
The top ten docking structures were selected based on lowest energy, and the protein interactions calculator was
used to identify different types of interactions including hydrophobic (interaction within 5 A), hydrogen bonds,
cation-pi, ionic and aromatic–aromatic interactions in all the ten models [29]. For the current study, the PDB
structures PDB: 1XQ8, 1F16 and 1R2D for α-synuclein, BAX and BCL2L1, respectively, were downloaded and
used for docking.

Results
When the STRING version 10 database was searched using the query protein α-synuclein selecting Homo sapiens
as the species, a complex PPI network with 20 interacting proteins (ten in first shell and ten in second shell) could
be seen (Figure 1). The nodes indicated the different interacting partners and the edges represented the nature of
interaction. After changing the parameter setting of PPIs to include only co-expression and experimental physical
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Figure 2. Refined protein–protein interaction network of α-synuclein. Ten interacting proteins are seen; interaction
score (0.40) and active interaction source includes experimental physical interaction and gene co-expression.

interaction, the parameters most expected to be involved in actual pathophysiologic process, we obtained a PPI
network shown in Figure 2. In this PPI network, there is experimental physical interaction between α-synuclein and
BAX which is a proapoptotic protein. In Figure 2, an important PD-related protein, LRRK2, was seen to interact
with α-synuclein through actual physical interaction and co-expression. We further refined the search by selecting
most significant five interactor proteins having only experimental physical interactions (Figure 3). We checked the
functions of the five interacting proteins present in Figure 3 from the STRING database, and the most important
protein among these which was related to cell death was BAX. When the STRING database was searched with
the two proteins BAX and α-synuclein simultaneously with number of interactors set at five, we obtained the
PPI network shown in Figure 4. In Figure 4, we observed that two important proteins of programmed cell death
pathways, BCL2L11 and BCL2L1, physically interact with BAX with high interaction scores of 0.828 and 0.97,
respectively. On the other hand, BAX has direct physical interactions with α-synuclein with moderate interaction
score of 0.52.

We further analyzed the protein–protein docking results between α-synuclein and BAX, as well as between
BAX and BCL2L1. The models obtained by docking showed that the 5th and 6th helices of BAX (PDB: 1F16)
within BCL2 homology domain (Pfam: 63–158) were involved in interaction with α-synuclein (PDB: 1XQ8). The
interacting residues are 142Asp, 143Phe, 147Arg, 151Trp and 154Asp of BAX (Figure 5). Phe at position 4 in the
first helix (3–11) of α-synuclein also seemed to be important for the interaction with BAX. Amino acids 71–97 of
five β-strands in the C-terminal of α-synuclein protein appeared to be another stretch that seemed to be interacting
with BAX. The protein–protein docking between BAX (PDB: 1F16) and BCL2L1 (PDB: 1R2D) again showed
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Figure 3. α-Synuclein and limited interacting proteins obtained from STRING version 10. Five interacting proteins in
protein–protein interaction network; interaction score set at 0.40 and active interaction source includes only
experimental physical interaction.
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Figure 4. STRING database search results with two query proteins: α-synuclein and BAX. Five interacting proteins of
α-synuclein and BAX can be seen; interaction score set at 0.40 (medium confidence) and active interaction source is
only experimental physical interaction. Apart from BAX, two more proteins of BCL2 family BCL2L1 and BCL2L11 are
also seen.

BCL-2 domain of BAX involved in interaction with BCL2L1. Furthermore, in BCL2L1 the residues Asp132 and
Asp133 were found to be involved in interaction in more than 50% of the top ten docking models.

Discussion
The understanding of pathogenesis, identification of risk factors and development of biomarkers and neuropro-
tective drugs for PD remains a challenging job [3,30]. In particular, there are many areas of uncertainties related
to the cause, mechanisms and nature of neuronal death in PD. However, the involvement of α-synuclein and
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Figure 5. Docking study of α-synuclein (PDB: 1XQ8) and Bax (PDB: 1F16) using ClusPro. ClusPro best model obtained after docking is
shown as ribbon diagram using PyMol (an open source molecular visualization system). α-synuclein is shown in cyan color and BAX in
green color, whereas BCL2 homology domain is highlighted in red. The numbers represent the helices (1–8) in BAX starting from the
N-terminus. The residues involved in interaction are shown with line and stick model Asp142, Phe143, Arg147, Trp151, Asp154 of BAX.

mitochondrial dysfunction in this process has been widely documented. We have been exploring this aspect in a
model of neural cell death in which the intracellular level of α-synuclein is raised by different nongenetic manipu-
lations [7,18,19]. In the current study, we have attempted to find out how a bioinformatics-based search could assist
us in identifying the mechanisms and nature of cell death in PD neurodegeneration. Our results first showed that
α-synuclein has an interacting partner, BAX, which is a proapoptotic protein belonging to the BCL2 family [31].
This interaction of α-synuclein and BAX was further validated by protein–protein docking studies, which showed
that BH3 domain of BAX is involved in the interaction process. BAX is a cytosolic protein which upon activa-
tion translocates to the mitochondria, undergoes oligomerization and induces apoptosis by permeabilization of
mitochondrial outer membrane and releasing proteins, such as cytochrome c, Smac/DIABLO, AIF, etc., leading
to apoptosis [31]. The trigger for the activation of BAX and subsequent translocation to mitochondria is unknown
but a conformational change of BAX is possibly required [31,32]. Our results tend to suggest that the binding of
α-synuclein to BAX with a presumable conformational change in BAX may be the initiating event. Furthermore,
α-synuclein, though a cytosolic protein, is capable of entering mitochondria and thus it is plausible that a complex
of α-synuclein–BAX would reach the mitochondria as the initiating event of cell death. It is interesting that the
interaction of α-synuclein with BAX takes place at the BCL2 homology domain, which is generally considered to
be the region where BH3-only protein can bind and activate BAX [32,33]. The interaction of BAX with BCL2L1
that is an antiapoptotic protein is also validated by protein–protein docking in our current study. This interaction
in normal conditions might lead to inactivation of pro-apoptotic function of BAX. However, it is plausible that,
under various stressful conditions α-synuclein binds with BAX and prevents BAX–BCL2L1 interactions, leading
to uninhibited pro-apoptotic action of BAX.

Another interesting area of controversy for PD neurodegeneration is related to the nature of cell death. Apoptosis
has been widely recognized as the pathway of neuronal death in PD, but the evidence for other modes of cell
death in PD is also substantial [16,17]. It has been shown that, under a variety of conditions, the death of SH-SY5Y
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cells is mediated by α-synuclein-induced mitochondrial permeability transition (MPT) pore activation, which can
be prevented by cyclosporine [7,18,19]. This mode of cell death is recognized as MPT-necrosis which could be, in
our opinion, a potential mechanism of PD neurodegeneration [34]. It appears that different cell death mechanisms
may function in concert in the degenerating dopaminergic neurons in the PD brain. Extending our hypothesis of
translocation of α-synuclein–BAX complex to the mitochondria, it is thus tempting to speculate that α-synuclein
initiates an apoptotic type of cell death indirectly through BAX, which causes mitochondrial outer membrane
permeabilization, and directly through a MPT-necrosis process.

Conclusion
Our bioinformatics-based study has provided new clues to understand the neurodegeneration of PD in model
systems. However, these possibilities of neuronal damage envisaged from bioinformatics-based analysis involving
α-synuclein, BCL family of proteins and mitochondria are only predictive in nature, and experimental validation
and biochemical characterizations of PPIs are necessary in suitable models to establish their role in actual PD
pathogenesis.

Future perspective
Utilizing bioinformatics-based approaches to understand the pathogenesis of diseases, especially neurodegenerative
diseases, is an emerging area with great potential. The current study has indicated how information gained from
database searching and protein–protein docking studies can be utilized to formulate a pathway of neuronal death in
PD. This will help us to design suitable experiments, optimizing resources and time, to obtain definitive information
on the molecular pathogenesis of PD. Without this information, experimental studies usually progress slowly by
trial and error approach. Thus, bioinformatics-based methods are an attractive alternative that may be utilized for
other neurological diseases as well. We anticipate more such similar studies in the future, but many refinements
and critical analyses will be required to develop this system fully.

Summary points

• This bioinformatics-based study aimed to identify a pathway of neuronal damage initiated by α-synuclein, which
could be relevant to Parkinson’s disease (PD) pathogenesis.

• Protein–protein interaction (PPI) networks were constructed on STRING version 10 using α-synuclein as the query
protein.

• The PPI networks were refined successively by changing parameter settings and focusing on experimental
evidence and co-expression data. A final network of α-synuclein and five interacting proteins, including BAX,
BCL2L1 and BCL2L11, involved in the apoptotic pathway was obtained.

• Protein–protein docking studies were carried out between α-synuclein and BAX as well as between BAX and
BCL2L1 to suggest possible molecular interactions among these proteins.

• Analyzing the data, we suggest that α-synuclein and BAX interactions followed by translocation of the complex to
mitochondria may trigger apoptotic neuronal death. This may have implications in the neurodegeneration of PD.

• These predictive data need experimental validation in suitable models.
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